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Executive Summary 
This deliverable reports the evaluation of the smart city use cases developed in CLASS. 
Three use cases have been selected to showcase the capabilities of the CLASS Software 
Architecture (SA): a real-time use case for the timely detection of potential collisions 
between road users, an air pollution estimation use case for the calculation of vehicle-
polluted emissions, based on real-time traffic data, and an offline simulation 
framework for traffic management in smart city environments.  

The deliverable is organized in three sections. First, an overview of the final release of 
the CLASS data analytics methods is given, providing links to the corresponding 
deliverables where the methods are fully described. Then, a description of the final 
infrastructure available at the Modena Automotive Smart Area (MASA) and the City of 
Modena data center is provided. Finally, the performance of the two real-time use 
cases (i.e., the collision detection and the air pollution estimation) is presented.  
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1 Description of the combined big-data analytics 
workflow implemented on the use cases 

CLASS has developed a software architecture (SA) and a big-data analytics workflow 
to implement three use cases in the context of smart cities, evaluated in the living lab 
environment at the Modena Automotive Smart Area (MASA).  

The main focus of CLASS has been laid on the implementation of two real-time use 
cases, as well as the development of a simulation framework for traffic management 
in smart city environments. The three CLASS use cases are the following:  

1. The collision detection application focuses on the real-time detection of potential 
collisions and the generation of warning messages to alert the involved vehicles. 
The analytics are applied on data collected from the city camera infrastructure 
available at MASA, as well as from smart and connected cars, if available, and are 
executed across the compute continuum, from edge to cloud. 

2. The air pollution estimation application estimates the vehicle-related pollution 
emissions in the MASA area, based on real-time information on the vehicles 
position, speed and type obtained by the CLASS data analytics. The output 
obtained estimates vehicle fuel consumption and emissions of NOx, PM, CO, HC 
and NO1 at a time resolution of 1Hz, for each vehicle and road segment. 

3. The digital traffic signs (green routes) application is a simulation framework for 
traffic management in smart city environments. This use case is not achievable in 
a real environment due to current traffic regulation. Our experimentation uses an 
urban transportation simulator, MATSim, with an extension introduced by CLASS. 
Specifically, the MASA area has been reproduced within the MATSim multi-agent 
simulator and four additional modules have been added to the MATSim simulator 
for enhancing its ability to simulate smart city related scenarios. These additions 
consist of a communication module and a smart agent module, in order to allow 
agents to send data to the software architecture, a perception module, in order to 
allow cameras to locate not equipped agents, and finally an analysis module to 
register values needed for the analysis. 

This section describes the final version of the combined big-data analytics workflow 
for the implementation of the aforementioned CLASS use cases.  

1.1 Big-data analytics methods overview 
Figure 1 shows the combined big-data analytics workflow as a Direct Acyclic Graph 
(DAG) in which nodes represent the different analytics methods (the number in the 
node identifies the method) and edges represent the data exchange (and so 
dependencies) among the different analytics.  

                                                             
1 NOx: Nitrogen Oxides; CO: Carbon monoxide; PM: Particulate Matter; HC: Hydrocarbons 
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Figure 1. The combined big-data analytics workflow 

The depicted analytics methods are summarized as follows. 

1. Sensor fusion. This method is responsible for the detection and tracking of objects, 
combining the data collected by the different sensors available in the smart and 
connected vehicles.  

2. Object detection. This method is responsible for the detection of objects and the 
computation of their position based on raw data from the city cameras in the MASA.  

3. Object tracking. This method tracks the movement of objects detected and 
identified with method 2, across multiple video frames.  

4. Data deduplication. This method identifies and removes multiple detections of the 
same object, when simultaneously captured by multiple cameras of the city.  

5. Trajectory prediction (TP). This method predicts the trajectory of road users (cars, 
bicycles, pedestrians, etc.) based on their history of tracked positions provided by 
method 3. 

6. Pollution computation. This method estimates emissions from the drive cycles of 
vehicles identified by method 3 based on the emission class (e.g., Euro 1, Euro 2, Euro 
3, etc) and vehicle speed over time.  

7. Data aggregation. This method is responsible of storing the information of the data 
analytics (methods 1-6) into a common data model and aggregating it to the Data 
Knowledge Base (DKB).  

8. Collision detection (CD). This method identifies potential collisions, based on the 
intersection of the trajectory predictions of two objects (computed by method 5).  
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9. Warning Area (WA) generation. This method generates a Warning Area with 
respect to a connected vehicle. Only objects in the WA of the vehicle are then 
considered as relevant to for the calculation of method 8.  

10. Alert visualization. This method, executed on connected vehicles, allows the 
visualization of potential collisions between the connected vehicle and other road 
users within its WA. 

11. Predictive models. This method implements the digital traffic signs application on 
the MatSim simulator [1]. 

1.2 Implementation of big-data analytics methods 
The big-data analytics methods have been first described in D1.2 [2], and then refined 
in D1.4 [3]. This section will provide a brief overview for convenience, and report any 
modifications and updates since the last reported version. 

1.2.1 Sensor fusion  
The sensor fusion method, executed in fully sensorized smart cars, aims to fuse the 
data from cameras and LiDARs (Light Detection and Ranging) in a computationally 
efficient way, so as to meet the real-time requirements of the application. Detailed 
updates to the sensor fusion task can be found in deliverable D3.6 [4]. The main 
change with respect to what previously reported is the update of the Deep Neural 
Network (DNN) version for object detection, which has been upgraded from Yolo v3 
to Yolo v4 to increase precision while keeping almost the same computational 
performance. 

1.2.2 Object detection  

The object detection method is applied on the video streams obtained by the street 
cameras in the MASA. The main concept behind the object detection in CLASS is the 
following. First, objects are detected and classified with an optimized version of Yolo 
that runs on the tkDNN framework. Then, the global position of each detected object 
is computed. To do so, each camera is manually calibrated to match known points in 
the image with their GPS position on a georeferenced map. After initial calibration, 
the homography matrix obtained is used to project the lower center of the bounding-
box (in pixels) onto the GPS plane. Detailed updates to the object detection task can 
be found in deliverable D3.6 [5]. 

1.2.3 Object tracking 

The aim of the tracking method is to follow the detected objects, tracking their 
movement within the area covered by each camera. Each tracker is associated with a 
video source and assigns a unique id to each tracked object. Detailed information on 
the object tracker task can be found in deliverable D3.6 [5]. 
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1.2.4 Data deduplication 

The aim of the data deduplication method is to identify and manage the road users 
that are detected by different actors (i.e., cameras or smart cars) which partially cover 
the same area. More details on the data deduplication task can be found in deliverable 
D3.6 [5]. 

A more detailed insight about how object IDs are handled by the deduplicator in order 
to allow the trajectory prediction and collision detection to address correctly the 
connected vehicles requests is the following. The data deduplicator considers as key 
the pair of camera ID and tracking ID, since each camera have its own tracking ID 
generated by the tracker. When two road users of the same category are within a 
defined threshold, the deduplicator keeps a vector of keys for each road user to 
maintain history of the previous IDs. In this way we are able to assign to each road 
user the same key and predict correctly its path when passing information to the 
trajectory predictor.  

1.2.5 Trajectory prediction (TP) 

The aim of the trajectory prediction is to provide an estimation of the most likely 
future positions of a road user (vehicle or pedestrian) based on the history of their 
tracked positions. The enhancements that have been introduced with respect to the 
work reported in D1.4 [3] will be described in continuation.  

In the first place, the implementation of the TP algorithm has been improved with the 
following modifications:  

• The number of predicted points and the time interval between consecutive 
predictions has been added as a configurable parameter. In the final evaluation, 
the estimation of future 8 points with an interval of 500 ms has been selected, 
corresponding to an overall trajectory prediction of 4 seconds. 

• Two different implementations of the regression algorithm have been added, that 
enable the execution of regressions with a configurable degree (e.g., 1st degree 
linear regression, 2nd degree quadratic, etc.).  

o The first regression method is actually an extension of the one reported in 
D1.4 [3], in which the trajectory past points are fit to a polynomial equation 
using the least-squares method.  

o The second regression method has been implemented by using the Scikit-
Learn2 open-source framework. In this method, the tool’s functions 
(concretely PolinomialFeatures3) are used to fit the trajectory data into a 
polynomial of variable degrees. More specifically, by specifying the 
maximum number of degrees for this polynomial, the tool returns a matrix 
with all the combinations of features with a degree less or equal to the one 
specified. Once this matrix is obtained, it is fed into a Linear Regression 

                                                             
2 https://scikit-learn.org/stable/  
3 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html  

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
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model (LinearRegression4) that fits to the values of the matrix and then, 
predicts the new trajectory values. This method can reduce the complexity 
(number of degrees) of the polynomial if it receives as input a high number, 
which may produce overfitting, but has a similar performance to the first 
method for low regression orders (i.e., first and second degree).   

In the final evaluation, regressions of first and second order have been employed, to 
better match the road segment covered by the different cameras (i.e., whether the 
covered area focuses on a straight road segment or a curve).  

In the second place, two dictionaries have been added as input to the TP method, 
determining the minimum and maximum amount of historical positions per type of 
object (i.e., car, pedestrian, etc.) to be considered for the regression-based prediction 
method. Higher values for the minimum number of considered points usually results 
to more stable predictions for the trajectory but have the drawback of requiring the 
object to be tracked for a longer time (which makes the algorithm more susceptible 
to lost frames or tracking errors). 

 
Figure 2. Minimal historical points for predictions 

 

 
Figure 3. Maximum historical points for predictions 

                                                             
4 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html  

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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The values selected for the two dictionaries in the final evaluation are shown in Figure 
2 and Figure 3, and have been set after an evaluation phase. For this evaluation, a 
comparison between the actual and predicted trajectories of road users in a recorded 
video have been made, considering different combinations of minimum historical 
points and number of predicted positions. An implementation of the Haversine5 
formula has been used to calculate the shortest distance in meters between the 
predicted and the real positions of each object, and the Root-Mean-Square Error 
(RMSE) of the distances has been used as the evaluation metric. 

An example of the evaluation process for two types of road users (pedestrian and cars) 
is shown in Figure 4, applied on a recorded video from the camera 20939 at the MASA. 
The output shows the RMSE values for different combinations of historical points (5, 
10, 20, 30, 40, 50) and predicted points (1, 5, 10, 20, 30). The selected combinations 
for each vehicle have been the ones that yield a relatively RMSE value with the 
smallest possible number of historical points. For example, for a prediction of 5 points 
ahead in time for pedestrians, a sufficiently small error can be obtained with 20 
historical points, whereas for cars, the reasonably good performance can be achieved 
with only 10 historical points.  

 
Figure 4. Evaluation of two trajectories for two types of road users (pedestrian and 

car) 

In CLASS, the TP is executed over the data available in the DKB in the following way. A 
dataClay filtering method has been implemented, that retrieves from the DKB all 

                                                             
5 https://www.movable-type.co.uk/scripts/latlong.html  

https://www.movable-type.co.uk/scripts/latlong.html
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relevant objects and their events on which TP must be applied, with the following 
properties: 

- it returns only those objects with sufficient number of recently tracked positions 
(i.e., at least equal to the minimum number of historical position as defined in the 
dictionary of Figure 2).  

- it returns a maximum of recent events, as determined by the dictionary of 
maximum historical positions of Figure 3.  

- It ensures that only objects with recently updated events are considered 

A Lithops wrapper function retrieves all the relevant information from dataClay, 
divides them into chunks of a configurable size (three by default) and triggers the 
Lithops actions for the concurrent estimation of predicted trajectories for each chunk 
based on the selected regression method. The predicted trajectories are then 
appended to the corresponding objects in the DKB. 

1.2.6 Data aggregation 

After the execution of the object detection, tracking and deduplicator methods, the 
extracted knowledge on the road users at the MASA is stored in a data model and 
aggregated into the DKB. This information is then updated by the trajectory prediction 
method, which adds prediction estimations for all objects with sufficient recent 
historical positions.  

Ultimately, all CLASS use cases are built upon the information aggregated in the DKB: 
the collision detection method is applied on all the vehicles with valid trajectory 
predictions, whereas the air pollution estimation employs information on the type and 
speed of the detected vehicles.  

The information included in the DKB is structured in the data model presented in 
Figure 5 and implemented with dataClay [6]. The final Python implementation of the 
model, with some changes with respect to D1.4 [3], includes the following classes: 

• DKB: it corresponds to the main Python class and contains the following 
information: 

o Kb: a dictionary of EventsSnapshots, maintained for a given (configurable) 
period of time (e.g., 15 minutes) 

o K: the maximum number of the most recent Events to be returned to the 
trajectory prediction and collision detection methods. The rest of Events 
are considered aged and not relevant for these calculations.    

o connectedCars: a list of the ids of the connected cars 
o objects: dictionary with object string identifies, used internally for 

communication with the TP method 
o federatedObjects: detected objects which have been federated to the DKB 

• EventsSnapshot: It contains a list of events (events_list) obtained by the analytics 
at a given timestamp. 

• Event: the event represents the information regarding the position and movement 
of a detected Object at a given timestamp. Each event consists of: 
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o id_event: a unique identifier of the event 
o timestamp: the timestamp at which the detection of the object took place 
o longitude_pos, latitude_pos: the GPS coordinates of detected objects 
o detectedObject: points to the Object with which the event is associated  
o speed and yaw: the instantaneous speed and orientation of the object 
o geohash: the geohash code corresponding to the GPS position of the object 

(see section 1.2.8 for more information) 

• Object: it represents the objects detected by the analytics. Each object consists of:  

o id_object: a unique identified of each object, assigned by the tracker 
(Section 1.2.3) 

o type: the type of the detected object (i.e., person, car, truck, bus, 
motorcyle, bike, train) 

o events_history: a dictionary with the Events associated with the object 
o trajectory_px, trajectory_py, trajectory_pt: it contains the most recent 

output of the trajectory prediction method for the object, i.e., a list of the 
GPS coordinates for each predicted point for a given time in the future  

o retrieval_id: string identifier used internally for object retrieval by the TP 
method 

 

 
Figure 5. Diagram of the data model for the information contained in the DKB 

Furthermore, a method for the periodic cleaning of the DKB has been implemented. The main 
idea is that EventSnapshots older than a given (configurable) age threshold are eliminated 
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from the data model. Once Events are deleted, any Object that remains with no associated 
events is also removed.   

1.2.7 Collision detection (CD) 

In the previous implementation of collision detection, reported in D1.4 [3], a collision 
detection was triggered when the trajectories of two road users intersected at the 
same future point in time. Since then, a substantial update of this method has been 
provided, defining a surrounding area6 around objects to account for the volume of 
the vehicles and the unpredictability of pedestrian movements. 

Specifically, an elliptical area with a width of 1.5 meters for each side of the vehicle 
has been defined for vehicles, whereas a triangular area of 50 degrees centered along 
the predicted linear trajectory has been considered for pedestrians. This modification 
has led to a more accurate detection of collisions, since the representation of objects 
is more realistic.  

An example is shown in Figure 6, with the current implementation of the CD depicted 
in the right part of the figure, and the previous implementation reported in D1.4 [3] 
shown at the left. For both plots, the TP calculation is exactly the same, with the blue 
line corresponding to the predicted trajectory of a car, and the green line 
corresponding to a pedestrian. In the previous implementation (left), the collision is 
defined as the intersection the two predicted trajectory lines, which can be 
interpreted as the potential event of the two objects being at the exact same position 
in a future moment in time. In the current implementation (right), collision is detected 
when there is an overlap in the surrounding areas of each type of vehicle, drawn 
around the predicted trajectory points (corresponding to the same moment in time. It 
is evident that the current approach can capture more realistic scenarios, e.g., when 
the collision of a pedestrian with the lateral part of a vehicle. Furthermore, detections 
may be detected earlier in time, as shown in this example, since the overlapping of 
the surrounding areas occurs before the intersection of the two trajectories.  

 

 
Figure 6. Example of collision detection implementation. Left: Initial implementation 
reported in D1.4, with collision detected as an intersection of predicted trajectories. 

                                                             
6 The Python library Shapely has been used to that end: https://pypi.org/project/Shapely/ 

https://pypi.org/project/Shapely/
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Right: Final implementation, with collisions detected as an overlapping of surrounding 
areas introduced around vehicles (elliptical) and pedestrians (triangular) 

Furthermore, the current method can capture potential collisions for objects that are 
close to each other, even when their trajectories are almost parallel, as shown in the 
example of Figure 7.  

 
Figure 7. Collision detection in close trajectories 

In CLASS, the CD is invoked asynchronously over the data available in the DKB in the 
following way. A dataClay filtering method has been implemented, that retrieves from 
the DKB all relevant objects with predicted trajectories. Then, the CD can be applied 
either to all the detected moving objects, checking the possibility of collision between 
all pairs of objects, or to only a subset of reference vehicles (e.g., connected cars) that 
request the computation of CD, depending on the desired scenario. In the second case, 
the Warning Area (WA) of the reference vehicle is first calculated and potential 
collisions between the reference vehicle and all the objects within the WA are then 
obtained.  

1.2.8 Warning Area generation 

The geohash7 encoding has been selected for the representation of the warning area 
around a vehicle. The geohash is a geocode system which encodes a geographic 
location into a short alphanumeric string. A geohash identifies a rectangular area in 
the map, whereas the number of digits defines the area of the cell.  

In CLASS, a precision of 7 digits has been selected, partitioning the map into square 
areas of 153m x 153m. When the CD is invoked for a specific object (e.g., a 
smart/connected car), the Warning Area is defined as the area within the same 
geohash, as well as the neighboring cells.  

1.2.9 Alert visualization  

The visualizer for the alert warnings is a 3D visualization tool written with the Godot 
game engine 8. This engine has been selected to facilitate the portability of the 
visualizer on different devices, such as the edge platform in smart and connected cars, 
                                                             
7 https://www.movable-type.co.uk/scripts/geohash.html  
8 https://godotengine.org/  

https://www.movable-type.co.uk/scripts/geohash.html
https://godotengine.org/
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as well as in the control room. The visualizer can receive data from the deduplicator 
to show all the road users detected by the workflow, or it can receive data from the 
collision detector to visualize the warning for the connected vehicle. 

A snapshot of the 3D visualizer showing the generation of a warning alert for a 
potential collision between two vehicles in shown in Figure 8. 

 

 
Figure 8. The 3D visualizer showing a warning for a potential collision between two 

vehicles 

1.2.10 Air Pollution estimation (and visualization) 

The air pollution estimation aims to infer vehicle-related pollution data based on the 
real-traffic information obtained by the street cameras in the MASA. This information 
is passed on the PHEMlight model [7], a micro-scale model for simulation of fuel 
consumption and instantaneous pollutant emissions of on-road vehicles. PHEMLight 
can distinguish between different types of cars (i.e., passenger cars, light, and heavy 
duty vehicles) and consider the corresponding emission classes (see D1.2 for detail). 

The PHEMLight estimation method can be called periodically to obtain the vehicle-
related information either at the fog layer (from the output of the deduplicator) or the 
cloud layer (at the DKB). Then the PHEMLight model is applied, generating the 
pollution emission estimations for the given time intervals.  

A visualization dashboard has also been developed as a web application, in order to 
show the obtained air pollution estimations on an interactive map. The dashboard 
prints the average pollutant values on the map, which can be selected by a drop-down 
menu, associating portions of the area (i.e., road segments) to the area covered by 
each street camera in the MASA. A snapshot of the dashboard is given in Figure 9. 
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Figure 9. Visualization of the PHEMLight output for two camera inputs at the MASA 

1.2.11 MATSIM 

The baseline version of MATSim does not enable the interaction among vehicles and 
the city infrastructure. Moreover, vehicles’ daily plans and corresponding routes are 
fixed at initialization time and do not change during the simulation runtime. Since this 
is a limitation that would prevent developers from testing emergency response 
mechanics, a MATSim extension has been used for allowing the developers to 
implement dynamic agent routing. Starting from the MATSim extension, CLASS has 
further developed the dynamic agent planning module so as to be able to dynamically 
adjust agents’ routes according to messages exchanged within the city infrastructure. 
The city infrastructure is implemented as an extension of MATSim. It is able to listen 
to the simulation’s events in order to obtain a global view of the city state. Position 
and communication capabilities of the involved vehicles are part of this observed 
state. In summary our developed extension allows the vehicles to communicate with 
the city infrastructure and thus, dynamically change their behaviour based on the 
information given by city infrastructure itself. 

First, a representation of the MASA area street network was created. We used several 
plugins to import to MATSim the original map from the OpenStreetMap (OSM) 
database and then we augmented the network with additional information such as 
capacities for the road links, turning bans and parking spaces. The MASA area is a 1-
square km wide area centered around the coordinates (44.65632, 10.93150) in OSM. 
The size of the simulated population was estimated using regional traffic flow data 
made available online; using such data we estimated a rush-hour road users 
population between 10000 and 20000 agents. 

For each experimental scenario we provide an XML file as required as input by 
MATSim. In such a file, we describe the initial plans for the agents, i.e. their departure 
and arrival locations. Plan are initially set for all the interested agents related to all the 
different experimental scenarios so to that the agents plans remain the same while 
we simulate different behaviors. Agents’ plans are constructed taking two random 
locations on the MASA map: these two places represent home and work locations. 
The agents perform two trips in a day, first from home to work, then from work to 
home.  
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The departure time from home and work is chosen following a normal distribution 
with peak on typical rush hours (8:00 AM–9:00 AM for home departure and 06:00 PM–
07:00 PM for departing from work). With regard to traffic modelling, simulated 
vehicles’ routes undergo a process of calibration for depicting realistic traffic 
situations. It is important to highlight, however, that the purpose of the test is not to 
provide a realistic reconstruction of the traffic in the MASA area. More specifically, we 
are interested in the mechanisms behind emergency response while varying the 
capabilities of the involved vehicles within a relatively restricted city area. 

Therefore, we argue that once one-way streets, turning bans, street lane 
directions/capacities extracted from OSM and a reasonable distribution of peak/rush 
hours are set for the simulation, this constitutes a proper environment for studying 
our proposed emergency response strategies. 

2 Description of the Modena Automotive Smart Area 
(MASA)  

2.1.1 Cameras and smart cameras 

Figure 10 shows the final position of the cameras (depicted as red markers) installed 
in the MASA, in Modena, Italy.  

 
Figure 10. Map of the installed cameras in MASA 

In detail, the cameras include:  
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- 1 four optic camera with 360o overview (number 231): this device (model “Axis 
Q6000-E Mk II”) has four 2MegaPixel sensors that provide a full detection and control 
of the roundabout (Figure 11). It also has computational capability on-board, but not 
programmable by the CLASS partners. For this reason, this device is connected to a 
specific edge-node hosted in the Modena data center, which manages the extraction 
of metadata from images by means of a trained DNN. 

 
Figure 11. 360 angle view of the Axis Q6000-E Mk II model 

- 14 traditional bullet cameras (numbers 106, 147, 168, 207, 208, 209, 211, 212, 232, 
236, 242, 244, 251) of various suppliers. In particular the “Axis P1367-E 5MP Outdoor 
Box Network Camera” model (numbers 208, 209, 211, 212, 232, 236, 251) provides 
images optimized for detection or forensic purposes regardless of light conditions, 
with the following key features, shown in Figure 12. 
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Figure 12. Technical overview of street camera specifications, model “Axis P1367-E 

5MP Outdoor Box Network Camera” 

 

 
Figure 13. Example of the quality of capture from the Axis P1367-E model 

These devices have a high quality resolution but don’t have any on-board computation 
resources. Hence, they are connected to four edge nodes that manage the data 
acquisition. 

The installation and testing of the new smart cameras, named “Mind City”, was not 
completed within the lifetime of CLASS, due to the impact of COVID which affected all 
the installation activities. However, the cameras are currently being installed, thus 
enhancing the MASA monitoring capability, even after the completion of CLASS. These 
cameras have two full HD sensors and on-board and a TX2 GPU. The design and some 
technical specifications of this camera are shown in Figure 14. 
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Figure 14. Technical overview of the camera model “Mind City Beta” 

 

 

2.1.2 Other IoT devices 

Some additional IoT devices installed in the MASA during the CLASS project are 
summarized next. These sensors were not exploited by the CLASS use case within the 
lifetime of the project, due to time limitations. However, their availability will be 
exploited in the future by the City of Modena, as part of the sustainability efforts to 
benefit from the outcome of the real-time CLASS use cases.  

• 2 Pollution sensors (“Libelium Wasp mote – Smart environment” model), 
connected to the Lo-Ra network, for the detection of the following air quality 
parameters: carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2); 
particulate matter (PM). The accuracy of the detection of these instruments is 
calibrated using as comparison the data of the official survey stations of the 
Regional Agency for the environment. 
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Figure 15. Technical overview of pollution sensors 

  

• 10 Lo-Ra parking sensors. 

These devices, installed on the surface of parking spaces, allow the detection of free 
parking slots (the arrival and departure of vehicles), by means of electromagnetic field 
sensor. 

 
Figure 16. Photo of a Lo-Ra parking sensor 

• 6 traffic lights counters for passing vehicles, made by magnetic loops, represented 
by green lines in the figure below. 
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Figure 17. Map of positioning of traffic light counters 

2.2 Smart and connected vehicles 

 
Figure 18. The Maserati Levante (at the left with the CLASS logo) and another 

Maserati car made available for the execution of the use cases  

CLASS has employed a Maserati Levante, a mid-size luxury crossover SUV (Sport Utility 
Vehicle) for the evaluation of the use case scenarios. In particular, the Levante 
acquired for the Class project is a Model Year 19, with a gasoline engine V6, 3.0l,  
430hp. Figure 26 shows a picture of the vehicle with the project and EC livery. 
Additional vehicles, not exclusively used by CLASS, have also been used during the 
execution of the use cases, to simulate hazardous driving conditions that could trigger 
an alert. More details on the employed car and the equipped sensors can be found in 
D1.4 [3]. 

2.3 Modena communication infrastructure 
MASA provides interconnected wired and wireless networks, detailed in continuation.  

2.3.1 Wired network 

A ring of optical fiber that interconnect the urban racetrack and the data center. The 
following map in Figure 19 shows the roads, roundabouts, bridge and parking areas 
that are interested by the project and that actually host devices and sensors. 
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Figure 19. Optical fiber interconnections in the MASA 

2.3.2 Wireless network 

We implemented three different types of connectivity, private 4G (4.5G), 5G and Long 
Range (LoRa) network, with dedicated antennas, shown in Figure 20. 

 

 
Figure 20. Map of private antennas available to CLASS 
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2.3.2.1 Private 4G (4.5G) network 

The LTE solution acquired is defined 4.5G in terms of functionality. We installed on-
site a 4G/4.5G dedicated infrastructure, both the antenna (installed on top of the 
highest building of the MASA, as shown in Figure 21), the radio component (eNB LTE) 
and the functionality of Core (Full EPC), implementing a private local area network. 

 
Figure 21. Photo of the installed antenna for the private cellular network used in 

CLASS 

The configuration identified guaranteed service levels, traffic capacity, low latency and 
the possibility of Network Slicing approximate to those envisaged in 5G technology, 
not yet available on the market in the first half of the project. This technical solution 
received the award from the ICCA during the Critical Communication World Event in 
Berlin9. 

2.3.2.2 Long Range network (LoRa) 

Long Range (LoRa) network is a network infrastructure to interconnect sensors and 
devices with low bandwidth needs, in our case parking and pollution sensors. 

We have implemented the LoRa Wide Area Network (LoRaWAN) protocol that 
supports long range, low-cost, mobile, energy-efficient and secure end-to-end bi-
directional communication for Internet of Things (IoT) and Machine to Machine 
(M2M) applications. It operates on license-free and cost-free Industrial, Scientific, 
Medical bands – EU 868 MHz. 

 

 

 

                                                             
9 https://www.athonet.com/athonets-private-lte-volte-in-the-deepest-mine-in-the-americas/ 

https://www.athonet.com/athonets-private-lte-volte-in-the-deepest-mine-in-the-americas/
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2.4 Modena computing infrastructure 

2.4.1 Edge Computing Infrastructure 
The MASA provides four x86-64 servers employed as edge nodes with the following 
features: 

Table 1. Edge nodes capabilities 

Feature Description 

CPU Intel® Xeon E3-1245 v.5 

RAM 32 GB 

Hard-Disk Samsung SSD PM951 256 GB 

LAN Gigabit Ethernet 

GPU NVIDIA Volta gpu (TitanV) 

 

Each edge node manages a cluster of traditional bullet cameras, giving them the 
computational capability, extracting metadata from images by means of trained 
neural network. 

2.4.2 Cloud Computing Infrastructure 

The City of Modena provides the computation and storage capabilities of its data 
center. In particular it provides a virtualization cluster infrastructure and a storage 
area network, with the following capabiltiies: 

• 3 bare metal hosts with two CPU Intel Xeon® Gold 5120, 2.20Ghz (14 cores for 
sockt) and 785 GB of storage; 

• 1 Storage Area Network (SAN) EMC2, model VNX-5400; 
• 1 Virtualization platform VM-Ware V-Sphere 6.5.0, based on VMware ESX, an 

enterprise-class type-1 hypervisor that includes and integrates vital OS 
components, such as a kernel; 

• 90 virtual processor; 
• 267 GB of RAM; 
• 1.473 GB of storage. 

Upon this computing infrastructure, several virtual machines (VMs) have been created 
for CLASS, such as: 

• One VM for the Open Street Map (OSM) platform (named openstreet), with a Linux 
Ubuntu 16.04; 

• One VM for the LoRa server platform (named Loraserver), with a Linux Debian 9; 
• Four VM for the OpenWhisk cluster (named CLASSibm1, CLASSibm4, CLASSibm5, 

CLASSibm6); 
• Four VM for the first Kubernetes cluster (named kube4, kube5, kube6 and kube7), 

with Linux Centos7. 
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• Four VM for the second Kubernetes cluster (named kube8, kube9, kube 10 and 
kube 11), with Linux Ubuntu 18.04. 

The detailed list of VMs dedicated to the implementation of the CLASS use cases is 
given in Table 2 

Table 2. List of CLASS VMs and their resources in the Modena data center 

Virtual machine 
name 

Operative 
system 

Number of 
CPU RAM Hard disks 

CLASSibm CentOS 7 8 64 GB 3 (196 GB) 

CLASSibm1 Ubuntu 18.04 16 16 GB 3 (196 GB) 

CLASSibm4 Ubuntu 18.04 8 16 GB 1 (100 GB) 

CLASSibm5 Ubuntu 18.04 8 16 GB 1 (100 GB) 

CLASSibm6 Ubuntu 18.04 8 16 GB 1 (100 GB) 

Loraserver Debian 9 4 2 GB 1 (16 GB) 

Kube4 Centos 7.5 2 16 GB 2 (96 GB) 

Kube5 Centos 7.5 1 8 GB 2 (96 GB) 

Kube6 Centos 7.5 1 8 GB 2 (96 GB) 

Kube7 Centos 7.5 1 8 GB 2 (96 GB) 

Kube8 Ubuntu 18.04 4 8 GB 1 (60 GB) 

Kube9 Ubuntu 18.04 4 8 GB 1 (60 GB) 

Kube10 Ubuntu 18.04 4 8 GB 1 (60 GB) 

Kube11 Ubuntu 18.04 4 8 GB 1 (60 GB) 

miniKube CentOS 7.5 16 64 GB 2 (96 GB) 

openStreetMap Ubuntu 16.04 1 1 GB 3 (45 GB) 
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3 Collision detection use case evaluation 

3.1 Description 
The aim of the collision detection use case is to identify situations that may lead to 
collisions between road users and generate alerts to warn the involved vehicles in 
time. In this section, we will provide the end-to-end evaluation of the collision 
detection use case, from two perspectives:  

- Analytics perspective: The performance of the analytics methods employed in 
CLASS will be evaluated. Even though the aim of CLASS has not been the 
optimization of the data analytics methods per se, their capability to meet the 
requirements of the use case has been validated.   

- Computation perspective: The end-to-end performance of the data analytics 
workflows executed across the compute continuum has been evaluated, showing 
capabilities and limitations of the complete CLASS workflow in real-life scenarios 
where real-time requirements need to be met.  

3.1.1 Collision detection use case evaluation from an analytics perspective 

This section presents the evaluation of the collision detection use case focusing on the 
performance of the data analytics for the timely detection of collisions in real-life 
scenarios. The methodology selected for this evaluation is described next.  

In order to obtain some meaningful results over the analytics performance, two 
reference videos recorded from two different cameras at the MASA (with IDs 6310 
and 20939) have been selected. In both videos, a collision scenario has been set up. 
The target of this evaluation is twofold: i) to determine the capability of the CLASS 
data analytics to timely detect the hazardous situations, and ii) to examine how the 
analytics performance is affected as the overall computation load of the computing 
infrastructure is increased. 

As a first step, an ideal (and not realistic) baseline scenario has been determined for 
each reference video: for each camera frame, there exist sufficient computing 
resources to timely execute all data analytics involved in the collision detection use 
case, i.e., from object detection to trajectory prediction and collision detection. In 
continuation, the analytics workflow have been executed over the same video on the 
MASA infrastructure using the CLASS Software Architecture (SA), while additional 
background data for live camera feeds execute simultaneously.   

3.1.1.1 Baseline scenario 1: parking exit at the Via Pico della Mirandola roundabout 
[camera 6310] 

The first baseline scenario is described in Figure 22. The reference video has been 
recorded by camera 6310, capturing the parking exit towards the Via Pico della 
Mirandola roundabout. The video (which from now on will be referred to as 6310-
video) captures a vehicle exiting the parking, while another car is approaching the 
roundabout. In this staged scenario, both cars are approaching with high speed and 
stop abruptly before impact, thus simulating a potential collision scenario.  
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For the baseline evaluation, the video has been fully processed in three steps: i) the 
object detection and tracking COMPSs-based workflow has been executed on every 
video frame, populating the DKB with all the obtained information (see Section 1.2.6), 
ii) TP has been invoked for all objects with a sufficient history of positions (see Section 
1.2.5), and iii) CD has been executed for all objects with calculated trajectories.  

 
Figure 22. Aerial view of the parking exit at the Via Pico della Mirandola roundabout 

– point of view of camera 6310 

A visualization tool designed in CLASS has been employed for the representation of 
the outcome of the data analytics on each of the input video frames. The information 
contained in the visualization output (as shown for example in Figure 23) is the 
following:  

- The bounding boxes are the outcome of the object detection method. Different 
colors are used for each type of detected object, e.g., blue for cars, orange for 
pedestrians, purple for bicycles, etc. 

- The green dots behind each detected objects and the object IDs are the output of 
the tracker, showing the history of positions where the object has been detected 
in previous frames 
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- The red lines correspond to the predicted trajectories of the objects with the 
necessary number of historical positions. In this examples, 8 points are predicted 
with a 500 ms interval between them (depicted as red dots). 

- Collision alerts, if present, are depicted as black dots. Furthermore, the list of 
detected collisions and the ids of the involved road users are also printed in the 
leftmost part of the frame.   

Based on the video, it has been determined that the staged collision between the two 
vehicles take place at frame 249, as shown in Figure 23. The two involved vehicles are 
the CLASS Maserati car, identified in the video as object 6310_337, and another 
Maserati car with id 6310_335. The timestamp of this event has been used as a 
reference for the calculation of the time margin between the detection of collisions 
based on the analytics and the actual collision.  

 
Figure 23. Moment of collision @ frame 256 of the recorded video from the 6310 

camera 

The first metric that has been measured was the time margin between the generation 
of the first collision detection alarm and the moment of collision. For the baseline 
scenario, the first collision detection for the two vehicles has taken place in frame 195, 
as depicted in Figure 24, corresponding to a 2.25 time margin.  
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Figure 24. Snapshot of first detection of the collision between the two vehicles @ 

frame 194 

It should be noted that, in each frame, the CD calculates the potential collisions for 
each object with a trajectory prediction against all other objects present in the frame. 
As a result, for each pair of vehicles, each collision is computed twice, i.e., for the pairs 
(object_1, object_2) and (object_2, object_1). These two calculations are not 
symmetric due to the implementation of the CD (with the definition of the 
surrounding areas, see Section 1.2.7), but as a general rule both calculations tend to 
provide a similar output (i.e., detection of potential collision or not).  

For the baseline scenario, the focus is laid on the potential collisions detected between 
the two reference vehicles, with ids 6310_337 and 6310_335. Figure 25 shows the 
number of generated collision alerts (as blue dots) generated for the pair (6310_337, 
6310_335) and the time margin with respect to the moment of actual collision, 
corresponding to t=0 (marked as an orange diamond). Exactly the same number of 
warnings have been also generated for the pair (6310_335, 6310_337), but are not 
depicted in the figure.  

 
Figure 25. Generated collision alerts between the reference vehicles (6310_337, 
6310_335) in baseline scenario for 6310-video 
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During the processing of the video, the CD analytics return a higher number of 
generated warnings, which usually correspond to false alarms that may be caused by 
errors of the detection and tracking analytics (e.g., parked cars may seem to slightly 
move in consecutive frames, triggering a collision alert), or they may refer to events 
that take place in the background of the frame but are very hard to evaluate (due to 
lack of clear visibility). To simplify the analysis, all collision alerts not involving the two 
reference vehicles have been considered as false alarms, producing computational 
overhead that does not contain any useful information. A summary of the obtained 
data describing the baseline scenario for the 6310-video are given in Table 3. 

Table 3. Summary of obtained data for 6310-video baseline scenario 

Collisions detected between pair (6310_338, 
6310_335) 56 

Collisions detected between pair (6310_335, 
6310_338) 54 

Maximum time margin (s) (first collision 
detection wrt. actual collision 2.25 

Total number of useful collisions 110 (11.7%) 
Total number of overhead alarms 830 (88.3%) 

Total generated alerts 940 
 

3.1.1.2 Baseline scenario 2: Str. Attiraglio and Canaletto Sud roundoubout [camera 
20939] 

A similar analysis has been conducted for another reference video recorded by camera 
20939, covering a part of Str. Attiraglio towards the Canaletto Sud roundabout, as 
shown in Figure 26. The main staged hazardous event in this video is the crossing of a 
bicycle (object 20939_240), while a CLASS Maserati car is approaching (object 
20939_84). For this scenario, the moment of collision has been set to frame 263, as 
depicted in Figure 27. Again, the timestamp of this event has been used as a reference 
for the calculation of the time margin between the detection of collisions based on 
the analytics and the actual collision.  

Due to a last-minute issue on the execution of the data-analytics workflow on the 
scenario 2, the real-time processing on this scenario is not included in this deliverable. 
We however consider that there is still value to include this information in this 
document. This scenario remains as a future work. 
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Figure 26. Aerial view of the Str. Attiraglio and Canaletto Sud roundabout – point of 

view of camera 20939 

 

 
Figure 27. Moment of collision @ frame 263 of the recorded video from the 20939 
camera 
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Figure 28. Snapshot of first detection of the collision between the two vehicles @ frame 
195 

In this case, the first detection of collision, triggering an alert, has taken place at frame 
206, as depicted in Figure 28, corresponding to a time margin of 1.9 seconds.  

 
Figure 29. Generated collision alerts between the reference vehicles (20939_84, 
20939_240) in baseline scenario for 6310-video 

An interesting point is that an onset of collision alerts is triggered as soon as the bicycle 
obtained a predicted trajectory (starting from frame 206), but then no more collisions 
are detected until some milliseconds before the collision, as shown in Figure 29. This 
can be explained by considering that in the staged scenario, the car actually started 
braking when approaching the bicycle. This change in speed has been reflected in the 
predicted trajectory, where the predicted path of the car is significantly shorter. This 
can be verified by comparing the trajectory depicted in Figure 30 (frame 239, 0.8 s 
before the collision) with the one in Figure 28. Once the bicycle passes in front of the 
car, the car starts accelerating again (see for example the trajectory in Figure 27), 
triggering another onset of alerts.  
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Figure 30. Example of how the braking of the car affects the predicted trajectory 

A summary of the obtained data describing the baseline scenario for the 20939-video 
are given in Table 4. 

Table 4. Summary of obtained data for 20939-video baseline scenario 

Collisions detected between pair (20939_84, 
20939_240) 

 
28 

Collisions detected between pair  
(20939_240, 6310_84) 

 25 

Maximum time margin (s) (first collision 
detection wrt. actual collision 

 1.9 

Total number of useful collisions  53 (5.64%) 
Total number of overhead alarms  887 (94.36%) 

Total generated alerts  940 
 

3.1.1.3 Real-time processing of the 6310-video (4 video sources) 

In continuation, the same 6310-video has been processed in real-time, with additional 
traffic generated from three more video sources (i.e., live streams from cameras 
covering the MASA). The frames from all cameras are received and processed 
concurrently by the CLASS analytics workflow. In this scenario, the two cars under 
study correspond to the detected objects 6310_314 (CLASS Maserati) and 6310_312. 
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In this execution, the collision takes place in frame 25710 (corresponding to the same 
relative position as in the baseline scenario).  

Due to the additional generated data and the constraints imposed by the limited 
resources available at the edge, not all frames can be processed by the CLASS SA. It 
should be noted that the total frames per second processed by the CLASS SA are 
maintained the same (around 10 fps), but the processed frames per video source is 
roughly divided by four (given the four connected sources).  

Furthermore, the higher number of detected and tracked objects from all cameras 
significantly increase the computation needed for the TP and CD calculations, as will 
also be commented in Section 3.1.2.  

Due to all the above considerations, the performance of the analytics is affected in the 
following way. Since less frames from the 6310 are processed and the TP and CD 
calculations take longer to complete, the number of detected collisions between the 
two cars is lower with respect to the baseline scenario. In this case, the detection of 
the frame collision takes place at frame 209, as shown in Figure 31, and only three 
collision alerts are generated, as depicted in Figure 32. However, the first alert still is 
generated with an acceptable margin of 2 seconds, showing the validity of the data 
analytics executed in real time over the CLASS SA.  

 

 
Figure 31. Snapshot of first detection of the collision between the two vehicles @ frame 
209 

                                                             
10 The analysis of the 6310-video in real-time with additional connected sources affects the numbering 
of the frames. However, this is not important since all the analysis is based on the obtained timestamp 
between processed frames.  
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Figure 32. Generated collision alerts between the reference vehicles for the  real-time 
scenario with 4 video sources (red dots) and the baseline scenario (blue dots) for the 
6310-video 

A summary of the obtained data is given in Table 5. The very high number of overhead 
alarms is also due to the data obtained from the three additional video sources.  

Table 5. Summary of obtained data for the real-time execution of the 6010-video  
scenario, considering 4 video sources 

Collisions detected between pair (20939_84, 
20939_240) 

3 

Collisions detected between pair  
(20939_240, 6310_84) 3 

Maximum time margin (s) (first collision 
detection wrt. actual collision 2 

Total number of useful collisions 6 (1.49%) 
Total number of overhead alarms 396 (98.51%) 

Total generated alerts 402 
 

3.1.1.1 Real-time processing of the 6310-video (8 and 14 video sources) 

Finally, the same experiment has been repeated by increasing the number of total 
video sources to eight and fourteen (i.e, the reference 6310-video plus 7 and 13 live 
streams respectively, from cameras in the MASA). In both scenarios, it has not been 
possible to obtain valid results for the analytics, due to the excessive load of processed 
data which could not be handled by the available computing resources. 

The next two figures show the behavior of the data analytics in the 8 camera sources 
scenario. Figure 33 shows the available data as the two cars are approaching the 
intersection. We can observe that the two reference vehicles have been detected and 
tracked, but there are not sufficient positions for the execution of the TP. On the 
contrary, in the previous experiment with only 4 video sources, the TP was obtained, 
as shown by the red trajectory lines in Figure 31.  
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Figure 33. Snapshot from the execution of the 6310-video with 7 additional video 
sources. The TP has not been yet calculated for the reference vehicles. 

Figure 34 shows the evolution of the experiment, when the two cars have almost 
arrived at the intersection. At this point, the TP has been invoked for the two cars and 
a TP has been calculated (red lines). However, it can be observed that the starting 
point of the predicted trajectory does not correspond to the current position of the 
cars, but to a previous position.  

 
Figure 34. Impact of the increased system load (8 video sources) on the completion of 

the trajectory prediction calculation 

The experiment when considering 14 cameras presents a behaviour similar to the one 
observed in the 8 camera scenario. 
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Next section evaluates the end-to-end response time, considering the computing 
resources across the compute continuum, i.e., from edge to cloud, that explains the 
results presented in this section. 

3.1.2 Collision detection use case evaluation from a computation perspective 

In this section, the performance evaluation of the collision detection use case is 
presented from a computation perspective, taking into account the computing 
resources available across the compute continuum. To do so, the complete data 
analytics workflow, as presented in Figure 1, has been executed over the CLASS SA, 
and the end-to-end execution time has been obtained for four different experiments: 
varying number of video sources, with 1, 4, 8 and 14 cameras. For all experiments, the 
6310-video has been used as the first video source, and live feeds from other cameras 
at the MASA have been used to increase the computational load of the system.  

Figure 35 shows the obtained end-to-end execution times for the four experiments, 
calculated as the sum of the execution times of the different components of the 
workflow executed across the compute continuum. The information is also included 
in Table 6. Specifically, the end-to-end execution time is decomposed into five 
components:  

i) The execution time of the COMPS-based analytics workflow executed at 
the edge (i.e., at the four fog nodes at the MASA). The edge workflow 
consists of the methods for the object detection, tracking, deduplication 
and data federation.  

ii) The execution time of the trajectory prediction and collision detection at 
the cloud. This time is affected by the number of detected and tracked 
objects.  

iii) The time consumed for the retrieval and update of objects stored the DKB 
(implemented with dataClay) at the cloud, requested by the trajectory 
prediction.  

iv) The time consumed for the retrieval of objects with valid trajectory 
predictions by the DBK at the cloud, requested by the collision detection 
method. 
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Figure 35. End-to-end execution times of the complete CLASS data analytics workflow 
for the collision detection use case 

 

Table 6. Decomposition of the end-to-end execution times for the collision detection 
use case 

 Execution times (ms) 

Video-
sources 

Workflow 
at Edge 

TP at 
Cloud 

CD at 
Cloud 

dataClay 
for TP 

dataClay 
for CD 

End-to-
end 

execution 

1 
camera 47.0 76.4 224.4 21.8 12.2 381.8 

4 
cameras 225.4 152.4 228.8 64.5 44.5 715.6 

8 
cameras 343.8 247.4 251.1 85.4 308.5 1236.2 

14 
cameras 701.9 272.1 591.7 155.2 89.4 1810.2 

 

As shown in Figure 35 and Table 6, the execution time of the edge analytics is affected 
by the increasing load, varying the total number of processed frames, i.e., from 10 fps 
in case of 1 camera, to 2 fps in case of 14 cameras. Overall, the execution of the 
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complete workflow when considering 8 and 14 cameras, suffers from excessive delays. 
The impact of these delays on the performance of the analytics was shown in the 
previous section, in Figure 34, where due to the increased time required for 
completion for the TP, the obtained data from the computation were outdated. 

One interesting observation is that the TP and CD are not invoked by the COMPSs-
based edge workflow, but are executed periodically and in an asynchronous way. As a 
result, the end-to-end execution time presented in Figure 35 has been calculated as 
the sum of the average time required by the different components. However, it should 
be noted that TP and CD are invoked as serverless actions over a varying number of 
objects, and their execution time is heavily affected by the number of objects. Hence, 
when zero objects are returned by the TP or CD dataClay calls (e.g., when there are no 
objects with sufficient positions for the TP to be invoked or there are no moving 
vehicles detected), the execution time of TP and CD is very low (approximately 56 ms 
in average). However, at the most critical parts of the reference videos, when the 
number of detected objects is high, the TP and CD calculations, as well as the 
corresponding dataClay calls, require a considerably higher amount of time, which is 
responsible for the deterioration of the quality of analytics. 

Concretely, for 1 and 4 cameras, this time remains relatively low, below 200 ms. 
However, for 8 and 14 cameras, the number of objects increases significantly, causing 
a bottleneck in the execution of the TP by tripling the TP time. In case of the collision 
detection, this time is also increased for a higher number of objects with the trajectory 
predicted. 

To highlight this fact, Figure 36 depicts the end-to-end execution time of the analytics, 
taking into account only the TP and CD actions with non-zero input objects. In this plot, 
the bottleneck created for the increasing number of objects, especially for the TP 
method (both the TP calculation and the TP-related dataClay calls) is evident. For 
reference, the values are included in Table 7. 
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Figure 36. End-to-end execution times of the complete CLASS data analytics workflow 
for the collision detection use case, when TP and CD execution times are calculated 
only over non-empty serverless actions. 

Table 7. Decomposition of the end-to-end execution times for the collision detection 
use case, when TP and CD execution times are calculated only over non-empty 

serverless actions 

 Execution times (ms) 

Video-
sources 

Workflow 
at Edge 

TP at 
Cloud 

CD at 
Cloud 

dataClay 
for TP 

dataClay 
for CD 

End-to-
end 

execution 

1 
camera 47.0 284.0 282.0 29.9 15.0 657.7 

4 
cameras 225.4 624.8 521.4 298.7 88.3 1758.7 

8 
cameras 343.8 1952.7 770.5 409.0 530.5 4006.4 

14 
cameras 701.9 7765.5 1842.5 2927.9 274.0 13511.7 

 

Finally, Table 8 presents two additional metrics for the evaluation of the TP and CD 
performance. The two columns at the left show the average and maximum (in 
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parenthesis) number of objects considered in the TP and CD serverless actions. It can 
be seen that the number of objects generally increases as more video sources are 
added. At the rightmost side, the average/maximum execution time of TP and CD 
actions weighted by the number of considered objects is included.  

It can be seen that this metric is not directly proportional to the number of object: for 
instance the TP/Object time for 4 cameras is higher wrt. to the case of 8 cameras). This 
phenomenon can be caused by some initial Lithops actions being executed in cold 
start, causing increased delay even for a low number of objects. 

Table 8. Average and maximum values of i) objects per TP and CD serverless action 
and ii) execution time for TP and CD per object 

Video-
sources 

Average (Max) Number 

of Objects per action 
Average (Max) execution time 

(ms) per Object 

TP CD TP/Object CD/Object 

1 camera 19.9 (27) 8.1 (12) 14.4 (12) 31.6 (61.3) 

4 cameras 15.2 (108) 30.5 (42) 53 (307.4) 18.6 (136.3) 

8 cameras 149.6 (179) 30.2 (51) 12.9 (77.3) 22.6 (240.7) 

14 cameras 245.4 (304) 60 (121) 30.8 (92.8) 16.9 (299) 

 

As a conclusion, three key improvements could be applied as a future step to 
overcome the bottleneck in the performance of TP and CD are:  

1. Guarantee that all Lithops functions are warmed, so no cold start is suffered. 
2. Enhance the filtering mechanism of objects for which the TP and CD are applied 

(e.g., by limiting the computation to only specific parts of the frame). 
3. Reduce the time required to access the DKB, by improving the retrieval 

mechanisms or using a different approach to the data storage and transfer. 

3.2 Air pollution estimation use case 

3.2.1 Background on vehicle-related air pollution models 

This section presents the evaluation of the air pollution estimation use case focusing 
on the performance of the data analytics for the calculation of the vehicle-related air 
pollutants based on real-time data.  

In order to interpret the obtained results, some background on the methods used to 
estimate the level of vehicle-related pollution is needed. Accurate measurements of 
the pollution levels due to the circulation of vehicles are very hard to obtain, due to 
the presence of multiple contamination sources within the city (e.g., emissions from 
factories, buildings, large communication infrastructures such as airports and 
harbors). As a result, the main approach is the use of air pollution estimation models, 
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such as COPERT11 (an EU standard vehicle emissions calculator) or MOVES12 (a similar 
approach adopted in the USA). Such solutions typically use long-term statistics on the 
vehicle population, mileage and speed, as an input to obtain pollution levels at a 
macroscopic level.  

More recently, solutions such as PHEMLight13 have been developed [7], enabling the 
estimation of pollutants at a microscopic level (e.g., at a per-hour basis), together with 
more detailed traffic simulation models that capture the traffic behavior at given 
urban areas [8].  

In CLASS, the novelty lies in using actual traffic information obtained in real-time, 
through the detection and tracking methods of the CLASS data analytics workflow. 
This approach has two key advantages: i) it relies on real traffic information (i.e., 
vehicle type, position and speed/acceleration), instead of simulated traffic models, 
and ii) it enables the estimation of air pollutant levels at a much smaller scale (i.e., in 
the order of minutes, or even seconds). As a result, more insights can be gained with 
respect to the impact of real-life traffic behavior on the level of emissions.  

3.2.2 Analytics perspective 

For this use case, a recorded video from the 20936 and 20937 cameras at the MASA 
area has been used. This video has been selected because it is one of areas of MASA 
with a higher number of vehicles (see Figure 37).   

  
Figure 37. Snapshot from the recorded video from the cameras 20936 (left) and 

20937 (right), used for the air pollution use case evaluation 

For the evaluation of the air pollution use case, the CLASS analytics workflow has been 
executed for a total of 75000 iterations, corresponding to the processing of 
approximately 42 minutes of the recorded video. Four different experiments have 
been conducted for this time interval, changing the frequency of invocation of the 
PHEMLight model:  

i) Execution of the PHEMLight model on the data generated approximately 
every 2 minutes, resulting to 15 invocations.  

ii) Execution of the PHEMLight approximately every 8 minutes, resulting to 5 
invocations over the 42 minutes interval. 

                                                             
11 https://www.emisia.com/utilities/copert/  
12 https://www.epa.gov/moves  
13 https://sumo.dlr.de/docs/Models/Emissions/PHEMlight.html  

https://www.emisia.com/utilities/copert/
https://www.epa.gov/moves
https://sumo.dlr.de/docs/Models/Emissions/PHEMlight.html
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iii) Execution of the PHEMLight approximately every 13 minutes, resulting to 
5 invocations over the 42 minutes interval.  

iv) Execution of the PHEMLight at the end of the 42 minutes of video. 

At the end of the video, the intermediate results of pollutant emissions computed with 
the PHEMLight model are combined to provide the overall accumulated pollution over 
the 42 minutes interval. 

Figure 38 shows the estimated accumulated levels of NOx, PM, CO, HC and NO14 
emissions, measured in kg/h, for the four calculation intervals of 2, 8, 13 and 42 
minutes. For each experiment, three different vehicle types have been considered, 
namely car, bus and heavy-duty vehicle (hdv, corresponding to trucks), since the 
emission levels for each type of vehicle is significantly different.  

Two key observations can be made on the obtained results:  

1. In the first place, as mentioned before, it is very hard to obtain reference values 
for the evaluated scenarios, since air quality indicators measured directly by 
sensors cannot isolate vehicle-related emissions and are typically affected by 
multiple sources of contamination, especially in industrial urban environments 
such as the city of Modena. The results presented in this deliverable have been 
validated by comparing them with the emission values computed from certain 
areas in the City of Barcelona, using PHEMLight15; results are in the same order of 
magnitude   

2. In the second place, as shown in Figure 38, the aggregated level of each pollutant 
for each type of vehicle is approximately the same, regardless of the calculation 
interval. This validates the consistency of the calculations, showing the ability of 
the CLASS analytics workflow to obtain fine grained results within a very small 
time-scale, with the same accuracy as hour-long observations. This feature opens 
the road to a level of analysis that was not possible before, since it enables the 
possibility of studying the impact of real traffic behaviours that cannot be captured 
by long-term statistical models. As an example, the proposed approach could 
estimate the emissions from a truck that remains parked with the engine on for 
several minutes in a given location, or the impact of traffic congestions at street 
intersections.  

The potential of this new approach has been identified in the last stages of the CLASS 
project and will be further exploited beyond the lifetime of the project. Indeed, BSC is 
currently employing the air pollution analytics workflow developed in CLASS to obtain 

                                                             
14 NOx: Nitrogen Oxides; PM: Particulate Matter; CO: Carbon monoxide; HC: Hydrocarbons 
15 These results have een computed by BSC Earth Science Department (https://www.bsc.es/research-
development/research-areas/atmospheric-composition/urban-air-quality-modelling) 

https://www.bsc.es/research-development/research-areas/atmospheric-composition/urban-air-quality-modelling
https://www.bsc.es/research-development/research-areas/atmospheric-composition/urban-air-quality-modelling
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a fine-grain estimation of vehicle-related pollutants in real-time, in collaboration with 
the city of Barcelona. 

 

 

 

 

 

 

 

 

Figure 38. Estimated levels of vehicle-related pollutants (NOx, NO, HC, CO and PM), 
measured in kg/h, at four different time intervals. 
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3.3 Digital traffic signs (green routes) 
To estimate the emergency vehicles response time, we are interested in observing 
how fast an ambulance (modelled as an emergency response agent) can travel to/from 
the site of an accident within the MASA. Ambulances travel time will be influenced by 
the percentage of smart agents over the total number of road users involved in our 
simulations. Considering this ratio as an experiment parameter is also useful for 
studying urban viability in the transitional period from exclusively human-driven 
vehicles to exclusively ADAS vehicles. It is reasonable to assume that both smart and 
non-smart vehicles will coexist until next-generation cars will completely overtake the 
classic transportation means. 

To determine the ambulance travel time with an increasing number of smart agents, 
multiple scenarios were run. In all these scenarios, we report the average travel time 
over a set of 30 ambulance trips. The first scenario consisted of 12000 agents with a 
scaling number of smart agents and results are depicted in Table 9. 

In Table 9 it is shown that the average response time of the emergency vehicles 
dramatically improves when the percentage of smart agents exceeds the 50% over the 
total number of road users. If all agents were representing ADAS capable vehicles, 
decrease in response time would amount to 36.7%. Another key variable in 
determining the average response time is the population size of road users within the 
interested area. We performed additional tests by increasing the number of agents to 
16 000, hence getting closer to the inevitable congestion of the MASA area we 
modelled in our simulation. In such a scenario, the response time improvement within 
a population characterized by 75% of smart agents would range from 4.3% to 8.33% 
with respect to the baseline scenario of no smart agents at all. 

Table 9. Ambulance average travel times with different kinds of agents 

 Smart agent 

percentage 

Ambulance 

travel time [s] 

% difference 

from Scenario 1 

Scenario 1 0 109 - 

Scenario 2 33 102 6.4 

Scenario 3 50 89 18.3 

Scenario 4 66 80 26.6 

Scenario 5 100 69 36.7 
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Acronyms and Abbreviations 
ADAS – Advanced driver-assistance systems 
API – Application Programming Interface  
Caas – Container as a Service  
CD – Collision Detection 
CLI – Command Line Interface 
D – Deliverable 
DAG – Direct Acyclic Graph 
DKB – Data Knowledge Base 
DNN – Deep Neural Network  
EXPRESS – EXtended PREdictability ServerlesS  
FaaS – Function as a Service  
HDV – Heavy Duty Vehicle 
IoT – Internet of Things  
LiDARs – Light Detection and Ranging  
LoRa – Long Range 
M2M – Machine to Machine  
MASA – Modena Automotive Smart Area 
MQTT – Message Queuing Telemetry Transport 
MS – Milestone 
OSM – OpenStreetMap 
RMSE – Root-Mean-Square Error  
SA – Software Architecture 
SDK – Software Development Kit 
SLA – Service Level Agreement  
SUV – Sport Utility Vehicle 
TP – Trajectory Prediction 
QoS – Quality of Service 
WP – Work Package 
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