

D2.8 – Evaluation of the CLASS Software
Architecture

Version 1.0

Document Information

Contract Number 780622

Project Website https://class-project.eu/

Contractual Deadline M42, 30th June 2021

Dissemination Level PU

Nature Report

Author(s) Elli Kartsakli (BSC)

Contributor(s) Eudald Sabaté (BSC)

Reviewer(s)

Keywords software architecture, CLASS scheduling strategy,
edge cloud coordination

Notices: The research leading to these results has received funding
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No “780622”.

 2021 CLASS Consortium Partners. All rights reserved.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

2

Change Log

Version Author Description of Change

V0.1 Elli Kartsakli (BSC) Initial Draft

V0.2 Eudald Sabaté (BSC) Introduction of results

V1.0 BSC Final version, ready to EC review

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

3

Table of contents
Executive Summary..4

1 Introduction..5

2 The COMPSs runtime scheduler...6

2.1 The system model for the analysis of distributed time-sensitive workflows..6

2.2 The CLASS scheduling heuristic policies ...7

3 Overview of the COMPs workflow implementing the CLASS data analytics
methods ..8

4 Performance Evaluation .. 11

4.1 The compute continuum infrastructure .. 11

4.2 Setup phase ... 11

4.3 Results ... 12

4.3.1 Scenario 1: Distributed processing across the four fog nodes.............. 12

4.3.2 Scenario 2: Exploiting the inner level of parallelism within the fog nodes
 15

Acronyms and Abbreviations .. 18

References... 19

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

4

Executive Summary
This deliverable presents the evaluation of the CLASS computation distribution layer,
responsible for the efficient distribution of the data analytics tasks across the compute
continuum and their execution providing the real-time guarantees required by the
project’s use cases. The key component of the computation distribution layer in the
CLASS Software Architecture (SA) is the COMP Superscalar (COMPSs) framework,
integrated with dataClay for the management and storage of data. To meet the real-
time requirements, the baseline COMPSs scheduler has been enhanced with the
implementation of four scheduling policies based on heuristics, aiming to minimize
the end-to-end response time of the analytics workflow.

The performance evaluation presented in this deliverable is focused on demonstrating
the performance improvement gained by the introduced scheduling heuristics, thus
demonstrating the capability of the distribution layer to comply with the use case real-
time requirements.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

5

1 Introduction
The aim of WP2 for milestone MS4 has been the final release of the CLASS Software
Architecture (SA), implementing all the necessary techniques to ensure the efficient
distribution of the data analytics workflows across the compute continuum.

The final release of the CLASS SA has been reported in detail in D2.7 [1], whereas the
performance of the different SA components has been individually evaluated in the
respective final deliverables of the technical Work Packages (WPs): the data analytics
platform (reported in D5.5 [2]) the cloud analytics platform (D4.6 [3]) and the edge
analytics platform (D3.6 [4]). Furthermore, the end-to-end performance evaluation of
the SA validating the CLASS use cases over the compute continuum infrastructure
deployed in the Modena Automotive Smart Area (MASA), at the city of Modena, Italy,
has bene detailed in D1.6 [5].

To complete the overall picture of the CLASS SA capabilities, this deliverable evaluates
the computation distribution layer, consisting of the COMP Superscalar (COMPSs)
framework, for the deployment, distribution and execution of complex analytics
workflows, and dataClay, a distributed data store managing the availability of data
across the compute continuum. As explained in D2.4 [6], COMPSs has been initially
designed for High Performance Computing (HPC) environments, and the schedulers
implemented in the COMPSs framework did not take into account real-time
constraints. To that end, in the context of CLASS, four scheduling policies based on
heuristics have been developed, aiming to minimize the end-to-end response time of
the analytics workflow. These policies have been described in detail in D2.6 [7], and
some preliminary performance results have been presented, using four well-known
HPC applications, as well as a simplified version of the CLASS analytics workflow.

This deliverable will present the performance evaluation of the COMPSs analytics
workflow implementing the CLASS data analytics methods for the obstacle detection
and tracking analytics at the edge and the aggregation of all extracted information into
the Data Knowledge Base (DKB) at the cloud. The evaluation is focused on
demonstrating the performance improvement gained by the introduced scheduling
heuristics, thus demonstrating the capability of the distribution layer to meet the use
case real-time requirements. The evaluation has been performed considering the final
release of the CLASS SA (as reported in D2.7 [1]) deployed in the MASA, considering
the final version of the data analytics employed for the validation and demonstration
of the project’s use cases, as summarized in D1.6 [5].

The remaining of this deliverable is organised as follows. Section 2 provides a summary
of the heuristic scheduling policies, first introduced in D2.6 [7]. Section 3 provides an
overview of the COMPSs workflow for the CLASS data analytics, which was used for
the evaluation. Finally, in Section 4, the performance evaluation results are presented
and discussed.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

6

2 The COMPSs runtime scheduler
This section will provide a high-level overview of the system model and the proposed
scheduling heuristics developed in CLASS, highlighting the key concepts needed for
the interpretation of the performance evaluation results. A complete description and
mathematical representation of these concepts can be found in D2.6 [7].

2.1 The system model for the analysis of distributed time-
sensitive workflows

COMPSs1 is a task-based programming model and runtime framework for the
development of parallel applications and their execution over distributed
infrastructures [8]. The COMPSs programming model enables the developer to
transform sequential code into COMPSs tasks, by simply annotating the methods that
can be distributed and marking their dependencies and their directionality (i.e., IN,
OUT or INOUT).

The COMPSs runtime represents a COMPSs workflow as a Task Dependency Graph
(TDG) or Directed Acyclic Graph (DAG): each node corresponds to a COMPSs task,
while the edges represent the data dependency between two tasks. Then, honoring
the task dependencies and based on the implemented scheduling policy, the COMPSs
runtime is responsible of distributing the tasks of the COMPSs workflow over the
available computing infrastructure.

However, even though the DAG representation fully describes the task-based analytics
workflow, it cannot describe heterogeneous environments in which the compute
continuum is formed by resources distributed from edge to cloud, as is the case in
CLASS. To tackle with this limitation, CLASS has proposed a novel system model that,
in addition to the DAG, also includes a Digraph (directed graph) compute continuum
model that characterizes the heterogeneous computing resources and the respective
communication links.

The mathematical representation and complete description of the DAG and Digraph
compute continuum system model adopted in class have been presented in detail in
D2.4 [6] and D2.6 [6]. Concerning the practical implementation, the DAG is generated
by COMPSs based on the definition and dependencies of the data analytics methods
using the COMPSs programming model (see also Section 3.2.1 in D2.7 [1]). On the
other hand, to build the Digraph compute continuum model, an initial profiling phase
must take place in order to obtain the characterization of the computing and
communication capabilities of the specific infrastructure on which the workflow will
be executed. The profiling will generate the following information, which will be used
by the COMPSs scheduler:

1) The average execution time of each task 𝐶𝐶𝑖𝑖,𝑘𝑘 on each available computing resource
𝑣𝑣𝑖𝑖 (compute node).

1 https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

7

2) The average data transfer time 𝑇𝑇𝑗𝑗,𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, corresponding to the time needed for the

transmission of a data payload between two dependent tasks 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 (e.g., the
output of task 𝑣𝑣𝑖𝑖 needed as input to 𝑣𝑣𝑗𝑗), which also depends on which nodes the
tasks are executed on.

In the classical DAG-based system model targeting shared memory architectures, the
volume of a DAG task, denoted as 𝐺𝐺, is defined as the sum of the worst-case execution
time (WCET) 𝐶𝐶𝑖𝑖 , of all the nodes of 𝐺𝐺. This value corresponds to the worst case
response time of the DAG task on a dedicated single-core platform [8]. However, in
the CLASS system model, this definition is not valid anymore since the response time
of an application highly depends on the scheduling decisions, given that the underlying
computing and communication infrastructure is heterogeneous.

Since there two factors affecting the response time of an application, i.e., the actual
execution time on the computing nodes and the data transfer times, two different
volumes are defined, considering a known (or static) allocation of tasks on resources:

1) the computation volume, defined as the sum of execution times of all tasks on the
allocated computing resources, and

2) the communication volume, defined as the sum of all necessary data transfer times
over the available communication links.

The sum of these two volumes constitutes the workload 𝑊𝑊, corresponding to the
worst-case execution time upper-bound Rub of the DAG executed on the Digraph
compute continuum, for the specific allocation policy.

2.2 The CLASS scheduling heuristic policies
Based on the aforementioned system model, four heuristics have been proposed,
aiming to minimize the end-to-end response time of the analytics workflow. The four
proposed schemes take into account two sets of priority rules, and are briefly
summarized next:

1) Heuristics based on successors, in which the next ready task2 is prioritized based
on two different criteria:

• Largest Number of Successors in Next Level (LNSNL). This heuristic selects
the task 𝑣𝑣𝑖𝑖 with the largest number of direct successors, with the objective
of increasing the number of nodes that become ready when 𝑣𝑣𝑖𝑖 completes.

• Largest Number of Successors (LNS). This heuristic selects the task 𝑣𝑣𝑖𝑖 with
the largest number of successors, with the objective of prioritizing the
execution of those portions of the DAG with the highest number of nodes,
and so potentially, the largest impact on the execution time of the
application.

2) Heuristics based on the processing time, in which the minimum completion time
of all ready tasks is first computed, and among the ready tasks two allocation
policies are defined:

2 A task is ready if all its direct predecessor tasks (nodes in the DAG) have been completed.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

8

• Shortest Processing Time (SPT). This heuristic selects the task 𝑣𝑣𝑖𝑖 with the
shortest completion time, i.e., prioritizing the smallest tasks (in terms of
execution time) in the fastest computing resources.

• Longest Processing Time (LPT): This heuristic selects the task 𝑣𝑣𝑖𝑖 with the
longest completion time, with the objective of prioritizing the biggest
nodes in the fastest computing resources.

The pseudocode for the implemented heuristics and additional explanations can be
found in Section 3.2 of D2.6 [7].

3 Overview of the COMPs workflow implementing the
CLASS data analytics methods

This section will provide an overview of the COMPSs workflow that implements the
data analytics executed at the edge and aggregation of data at the DKB in the cloud. For
the performance evaluation, we will focus on the main part of the COMPSs workflow that
is common for both CLASS use cases, namely the collision detection and the air pollution 3.
This common workflow includes the data analytics methods depicted in Figure 1, and is
a subset of the overall workflow reported in D2.7 [1]. More details on the data analytics
and implemented methods can be found in D2.7 [1] and D1.6 [5].

Figure 1. COMPSs task-based data analytics methods of the CLASS use cases

The workflow consists of a COMPSs application that connects to the “object detection”
data analytics method and invokes the “object tracking”, which identifies and tracks
objects. The detected objects from all sources go into the “data deduplication”
method, and the output is stored in dataClay (persisting the information at the fog
level) and is federated to the cloud, stored in the Data Knowledge Base (DKB).

The implementation of the COMPS analytics workflow has been described in D2.7 [1]. For
convenience and to enhance readability, this information will be also included in this
section.

3 This workflow corresponds to the full COMPSs analytics methods employed for the collision use case.
The air pollution use case calls one additional method that invokes the computation of the air pollution
estimation, based on the data of the DKB.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

9

Figure 2 shows the pseudo-code of the common part of the COMPSs-based Python
application that implements the data analytics executed at the edge for both CLASS use
cases.

@task(returns=list)
def get_detected_objects (camera_socket):
 return tkDNN_detected_objects(camera_id)

@task(object_list=IN, tracked_objects=IN, returns=list)
def tracker(object_list, tracked_objects):
 return track(object_list, tracked_objects)

@task(object_list=COLLECTION_IN, returns=list)
def deduplicator(tracked_objects):
 return deduplicated_obj(tracked_objects)

@task(deduplicated_objects=IN, dC_model = IN)
def create_data_model(deduplicated_obj):
 snapshot = dC_model.Create_snapshot(deduplicated_obj)
 create_air_pollution_datafile(deduplicated_obj)
 return snapshot

@task(snapshot=IN, backend_to_federate=IN)
def federate_info(snapshot, backend_to_federate):
 snapshot.federate_to_backend(backend_to_federate)

Main function ##
while True:
 for i, socket in camera_sockets
 obj_list = get_detected_objects (socket)
 tracked_obj[i] = tracker(obj_list, tracked_obj[i])
 deduplicated_obj = deduplicator(tracked_obj)
 snapshot = create_data_model(deduplicated_obj)
 federate_info(snapshot, external_backend_id)

Figure 2. The COMPSs workflow for the CLASS use cases

The application iteratively executes the following functionalities encapsulated in
COMPSs tasks:
- get_detected_objects: it connects via UDP socket, to the edge device where
the “object detection” data analytics method (tkDNN) is being executed, namely, the
edge node where the input videos from smart cameras are processed. The list of
detected objects is received.
- tracker: it executes the “object tracking” data analytics method. It is implemented
in C++, thus a Python binding has been implemented. Each data source (i.e., camera)
is connected to a different tracker tasks, enabling the parallelization of the tracking
process among multiple cameras.
- deduplicator: it deduplicates the objects detected by multiple sources (e.g.,
different cameras with partial overlapping of the covered area), returning only one
copy per object.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

10

- create_data_model: it executes a dataClay method to store newly detected
objects or update existing objects with new events (i.e., detected positions and other
relevant information), creating snapshots.
- federate_info: it federates the snapshots created at the fog level to the
dataClay backend at the cloud (updating the DKB).
Figure 3 shows the Direct Acyclic Graph (DAG) representation of the COMPSs tasks for
two iterations of the workflow considering a single video source.

Figure 3. COMPSs DAG for two iterations of the workflow for a single camera source

In reality, the complexity of the DAG is much higher, since typically a higher number
of iterations is considered for each scheduling interval (resulting to a high number of
generated tasks), and multiple video sources are employed. As a reference, Figure 4
shows the DAG corresponding to 1 second of processing for a single camera.

The generated tasks of the DAG are then distributed and scheduled based on the
implemented heuristics that aim to minimize the end-to-end execution time.

Figure 4. COMPSs DAG for 1s of processing from a single video source

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

11

4 Performance Evaluation

4.1 The compute continuum infrastructure
Figure 5 presents the compute continuum infrastructure at the MASA (fog nodes 1-4)
and Modena data center (cloud), on which the COMPSs analytics workflow has been
executed. The figures shows an example of the distribution of the different analytics
methods on the different computing resources. The dataClay dependent tasks (i.e.,
the data model creation and federation) are constrained to be executed at Fog Node
4. However, the object tracking tasks can be distributed anywhere across the compute
continuum, based on the scheduling policy.

Figure 5. Description of the execution of the collision detection and air pollution
estimation applications over the CLASS software architecture

4.2 Setup phase
For the implementation and evaluation of the proposed heuristic scheduling policies,
the DAG and the Digraph (directed graph) compute continuum model must be
obtained.

The structure of the DAG is already provided by COMPSs which dynamically builds it
at runtime. To retrieve this information, the tag –g (-graph) is used when executing
COMPSs (with the runcompss command). This tag generates a dot file 4, as the one of
Figure 4, containing all the nodes composing the application, interconnected by edges
that represent the dependencies among them. By parsing this file, all the
dependencies among nodes and the identifiers of these dependencies are obtained,
enabling us to extract all the necessary information for the implementation of the
heuristics (for more information, see D2.7).

4 https://graphviz.org/doc/info/lang.html

https://graphviz.org/doc/info/lang.html

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

12

The upper bound execution time 𝐶𝐶𝑖𝑖,𝑘𝑘 (see Section 2.1) is gathered by executing all
tasks composing the application in the different computing resources while using all
the logging and tracing functions provided by COMPSs.

As a second step, a full profiling of the compute continuum has taken place, in order
to characterize the quality of the communication link. To that end, the iPerf5 tool has
been employed to retrieve measurements of the maximum achievable bandwidth
between all different pairs of computing resources. These bandwidth values are used
to determine the data transfer times, i.e., the time needed to transfer the dependent
data between a pair of computing nodes, given their known payload and the additional
overhead due to the communication protocol (i.e, Ethernet IEEE 802.3 for the wired
connections among the fog and cloud resources in Modena).

4.3 Results
The performance evaluation of the proposed heuristic scheduling policies has been
conducted considering two different scenarios. In the first scenario, computation is
distributed among the four available computing nodes, as explained in the previous
section (Figure 5). In the second scenario, the parallelization capabilities within the
computing nodes are further exploited, with tasks being scheduled for concurrent
execution across the four computing units of each fog node.

For both scenarios, the performance has been evaluated for one and three video
sources. For all experiments, a fixed number of 400 workflow iterations has been
selected, with each iteration corresponding to the complete processing of a single
frame per video source, from the retrieval of the frame until the federation of the
extracted information (i.e., detected, tracked and deduplicated objects with their
associated position information) to the DKB in the cloud. Each experiment has been
repeated 10 times, and the average execution time per iteration has been measured
for each execution.

4.3.1 Scenario 1: Distributed processing across the four fog nodes

The four proposed heuristics have been compared with the First-In-First-Out (FIFO)
policy implemented by the default COMPSs scheduler. Figure 6 depicts the average
execution time (in seconds) per iteration of the workflow, for the five different
policies. The boxplot representation has been selected, showing the five-number
summary of the data, i.e., the minimum, first quartile, median, third quartile, and
maximum. It can be seen that all heuristics outperform the FIFO policy, achieving
lower execution times and much more stability, with all results being very close to the
median value.

Similar results are obtained when the number of video sources is increased, as shown
in Figure 7. A slight increase in the iteration times with respect to the first scenario (in
the order of 20-30 ms) is observed, due to the increased number of detected and

5 https://iperf.fr/

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

13

processed objects (i.e., detected, tracked and deduplicated) coming from 3 frames
being processed simultaneously.

Figure 6. Execution time per iteration, with input from 1 video source

Figure 7. Execution time per iteration, with input from 3 video source

Figure 8 depicts the gain in the average execution time achieved by the different
scheduling policies with respect to FIFO. The heuristics show similar behaviour for
both scenarios, although the gain when three video sources are considered is reduced.
The Largest Number of Successors (LNS) policy yields the best performance, achieving
a 46.4% reduction in the average iteration execution time for a single video source,

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

14

and 37.8% for three video sources. The lowest gain is achieved by the Longest
Processing Time (LPT), which still provides a considerable gain in time reduction with
respect to the default FIFO scheduler of 22.5% for a single video source, and 16.5% for
three video sources.

The performance of the heuristics is tightly related to the structure of the DAG, since
the efficiency of the scheduling policy greatly depends on the number and nature of
tasks and their dependencies. For the CLASS data analytics workflow, we have
demonstrated that scheduling first the tasks with higher numbers of successors, which
would correspond to the detection and tracking tasks based on the application DAG
(Figure 3), is the approach that provides the best execution times. Prioritizing these
tasks allows the retrieval and processing of more consecutive frames from the video
sources (which are dependent from one frame to the next), while there is no
dependency between the deduplication and federation tasks that can be executed
concurrently or in a different order. On the other hand, the LPT strategy prioritizes the
more time consuming analytics tasks, which in the CLASS workflow correspond to the
data federation to the cloud, due to the increased time needed to transfer the data to
the cloud and introduce them to the DKB.

Figure 8. Reduction in execution time achieved by the proposed heuristics with

respect to FIFO

Finally, Figure 9 presents the overall execution time of the workflow for 1 and 3 video
sources, respectively. As expected, the obtained results show a similar behaviour as
the execution times per iteration. Furthermore, these plots depict the response time
upper bound (Rub) for the heuristic scheduling methods, plotted as a red line. The Rub
has been calculated as the sum of the computation and communication volumes for
each heuristic, as explained in Section 2.1. To account for the unpredictability of
heterogeneous edge computing environments, a safety margin has been applied. In
particular, a 50% safety margin has been added to the computation volume, while a
5% safety margin has been added to the communication volume.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

15

The calculation of the Rub is an important feature of the proposed system model, since
it enable us to have a valid estimation of the response time of the workflow. This is a
very important feature provided by the scheduler, since it provides some degree of
predictability of the performance of the data analytics workflow.

Figure 9. Total execution time of the workflow, for input from 1 (left) and 3 (right) video
sources

4.3.2 Scenario 2: Exploiting the inner level of parallelism within the
fog nodes

In the second scenario, the heuristics have been further improved to take into account
the inner parallelism capabilities of the fog nodes, considering four cores per node. To
do so, the heuristic considers two new conditions:

1. The communication cost among tasks being allocated in different cores from
the same fog nodes is zero, and

2. The computation cost of tasks being allocated simultaneously in two different
cores from the same fog node, is increased by a given factor, to take into
account the hardware interferences (e.g., memory, interconnection network)
suffered by the simultaneous execution of tasks.

These two new conditions have been included into allocation heuristics into the
COMPSs framework, supporting the distribution of tasks across multiple cores of the
same node. In this section the LNS and LNSNL heuristics have only been considered.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

16

Figure 10. Total execution time of the workflow, for input from 1 (left) and 3 (right)
video sources, when tasks are distributed across the four computing units of the fog
nodes

Figure 10 shows the end-to-end execution time for the two heuristics LNS and LNSNL,
versus the FIFO baseline. By exploiting the inner parallelism of the fog nodes,
performance is significantly improved. Specifically, significant reduction in
performance is achieved with respect to the first scenario when the multi-core
architecture of the nodes is not fully exploited. Figure 11 shows the reduction in the
end-to-end execution time with respect to the results of the first scenario (as depicted
in Figure 9), with gains in the order of 70% for the LNS scheduling policy for both 1 and
3 video sources, and above 80% for the LNSNL policy.

Figure 11. Reduction in end-to-end execution time achieved by the scheduling
heuristics when inner parallelism in the fog nodes is exploited, with respect to the
performance achieved in the first scenario (when the inner parallelism capability is
available)

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

17

5 Conclusions
This document presents the CLASS allocation heuristics applied to schedule the data-
analytics workflow responsible for the generation of the DKB into the MASA fog
computing infrastructure. Two scenarios are considered:

i. the exploitation of parallelism across multiple fog nodes, and
ii. the exploitation of both parallelism across fog nodes and internally among

cores within the same fog node.

The results shows that the full exploitation of the parallel capabilities of the MASA
computing infrastructure, significantly reduces the end-to-end response time of the
data-analytics workflow. Moreover, it opens the road for further investigation,
encouraging the design of more sophisticated scheduling policies to match the specific
requirements of the analytics. The presented schemes have yielded significant
enhancements in terms of the end-to-end execution time of the data-analytics
workflow and can be applied to any task-based analytics workflow.

Concretely, it remains as a future work to provide a more fine-grained control over
the scheduling of the specific analytics tasks, enabling the prioritization of specific
tasks based on their specific Quality of Service (QoS) requirements, could potentially
provide further improvements in performance, from an analytics perspective.

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

18

Acronyms and Abbreviations
COMPSs – COMP Superscalar
D – Deliverable
DAG – Direct Acyclic Graph
DKB – Data Knowledge Base
FIFO – First-In-First-Out
HPC – High Performance Computing
MASA – Modena Automotive Smart Area
MS – Milestone
QoS – Quality of Service
SA – Software Architecture
TDG – Task Dependency Graph
WP – Work Package

D2.8 – Ev aluation of the CLASS Softw are Architecture
Version 1.0

19

References

[1] CLASS, "D2.7 - Final release of the CLASS Software Architecture," June 2021.

[2] CLASS, "D5.5 - Final Release of CLASS Big-Data Analytics Layer," June 2021.

[3] CLASS, "D4.6 - Validation of the Cloud Data Analytics Service Management and
Scalability Components," March 2021.

[4] CLASS, "D3.6 - Validation of the CLASS edge computing subsystem," June 2021.

[5] CLASS, "D1.6 - Use case evaluation," June 2021.

[6] CLASS, "D2.4 - First release of the CLASS software architecture," March 2019.

[7] CLASS, "D2.6 - Second release of the CLASS Software Architecture," July 2020.

[8] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan, C. Ramon-Cortes
and R. Sirvent, "Comp superscalar, an interoperable programming framework,"
Software X, vol. 3, pp. 32-36, 2015.

[9] CLASS, "D2.1 - CLASS Software Architecture Requirements and Integration Plan,"
2018.

[10] CLASS, "D5.4 - FInal release of an augmented platform for analytics workloads,"
July 2020.

[11] CLASS, "D1.4 - Final release of the smart city use case," July 2020.

[12] CLASS, "D1.2 - Final release of the Smart City Use-Cases," March 2019.

[13] CLASS, "D2.8 - Evaluation of the CLASS Software Architecture," June 2021.

	Executive Summary
	1 Introduction
	2 The COMPSs runtime scheduler
	2.1 The system model for the analysis of distributed time-sensitive workflows
	2.2 The CLASS scheduling heuristic policies

	3 Overview of the COMPs workflow implementing the CLASS data analytics methods
	4 Performance Evaluation
	4.1 The compute continuum infrastructure
	4.2 Setup phase
	4.3 Results
	4.3.1 Scenario 1: Distributed processing across the four fog nodes
	4.3.2 Scenario 2: Exploiting the inner level of parallelism within the fog nodes

	5 Conclusions
	Acronyms and Abbreviations
	References

