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Executive Summary 
This deliverable (D4.6) corresponds to the release of the “Validation of the Cloud 
Data Analytics Service Management and Scalability components” for the CLASS 
project. This includes the results of WP4 task, “T4.4 Validation of Cloud Computing 
side”, initially planned to be done between months M30-M36, and finally extended 
until M39.  
The scope of the current deliverable comprehends: 

 The validation of the Data Analytics Service and Scalability components 
integrated into the CLASS architecture from different perspectives.  

 The description of the tests performed to assess the Real-time guarantees, 
flexibility, and elasticity of the solution.  

 The description and validation of the mechanisms implemented to improve 
real-time guarantees. 
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1 Introduction 
1.1 About this deliverable  
The focus of this document is the validation of the cloud requirements following the 
“Technical Requirements of the CLASS Software Architecture” described in (D2.1) and 
the “Cloud Requirement Specification and Definition” described in (D4.1). For this we 
will consider the results presented in MS1 and MS2, and described in (D4.2)“First 
release of the Cloud Data Analytics Service Management components”, (D4.4) “First 
release of the Cloud Data Analytics Service Scalability components” and (D4.7)“Final 
release of the Cloud Data Analytics Service Management and Scalability components”. 

The following image shows the relation to other deliverables and work packages. 

 
Figure 1 CLASS architecture & WPs 

We will also present the experiments performed for the validation of the Cloud Data 
components and the improvements introduced after these experiments. 

1.2 Structure of the document  
This document is structured as follows: 

− Section 1 contains the introduction, the glossary of terms used in this 
document, and the description of the document’s structure. 

− Section 2 describes the validation from the point of view of the initial 
Requirements. 

− Section 3 describes the validation from the point of view of the overall 
functional requirements and the experiments performed to assess them. 
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− Section 4 describe the changes in the architecture and new components 
developed to ensure time guarantee. 

− Section 5 presents the result of the validation. 
− And finally, section 6 presents the conclusion. 
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2 Validation of the Cloud Requirement Specification 
and Definition features 

In MS1 after analysing the stakeholders and business goals, the CLASS Cloud 
Computing Platform system and software requirements were identified and described 
in (D4.1). The CLASS Cloud Computing Platform comprises two layers: Rotterdam, our 
CaaS, and the Cloud Infrastructure layer.  

 

Rotterdam 

System Requirements 

1. Cloud-native deployment 
2. Simplified deployment of analytic tasks 
3. Microservices style 
4. API gateway pattern 
5. High throughput / low latency guarantees 
6. Analytics performance monitoring 
7. Adaptation rules engine 
8. Adaptation enactment 
9. WS-Agreement-compliant SLA  

Software Requirements 

10. API gateway programming language 
11. Multi-cloud deployment engine 
12. Multi-cloud toolkit 
13. Native-cloud toolkit 
14. Rules engine 
15. SLA engine  

Cloud Infrastructure 

System Requirements 

1. Container orchestration 
2. Support to traditional virtualization 
3. Public cloud IaaS 
4. Private cloud IaaS  

Software Requirements 

5. Docker containers 
6. Container orchestration solution 
7. Kubernetes charts 
8. Public cloud infrastructure 
9. Private cloud infrastructure 
10. Virtual machines on bare metal  

Table 1 CLASS Cloud Computing Platform Requirements (extracted from (D4.1)) 

On next paragraph, extracted from an article in the CLASS project blog (Blog, s.f.), 
there is a simplified description of the CLASS Cloud Computing Platform. We have 
linked the different requirements (by means of numbers) with the feature in the 
description that helps achieving each requirement. Nevertheless, a full description of 
the Final released version of the Cloud Data Analytics Service Management and 
Scalability components can be found in (D4.7), where all the features were described 
in deep. 
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“Rotterdam is a Container as a Service (CaaS) {1} which facilitates the deployment 
and lifecycle management and monitoring of multiple containerized applications and 
cloud data analytics workloads running simultaneously on multiple containerized 
orchestrators through API calls, abstracting all the cloud infrastructure details away 
from developers. It includes a lightweight implementation of an SLA system, 
responsible for enforcing QoS parameters, including real-time. Rotterdam 
subcomponents provide Data Analytics Service Management and Scalability features: 

 A CaaS API gateway {10} for providing REST APIs {4} {3}to developers for 
deploying data analytics tasks easily 

 A Deployment Engine {2} for optimal placement of data analytics services 
on cloud resources 

 An SLA Manager {15} {9} to achieve soft real time guarantees by 
constantly monitoring and enforcing QoS parameters (such as throughput 
and latency) {5}. 

 An Adaptation Engine {8} for self-managed and elastic scalability actions 
based on SLA Manager’s inputs.” 

 

Rotterdam was enhanced with new functionalities in MS3, presented in (D4.7), that 
helped achieve some of the last requirements, like: 

− “Transparent lifecycle management of data analytic workloads in multiple 
Cloud and Edge clusters {12} {13} 

− Creation and management of connections to multiple Cloud and Edge 
containers orchestrators {11} 

− Real-time QoS guarantees, SLA management and data analytics service 
scalability {7} 

− Performance monitoring of data analytics workloads and infrastructures {6}” 

The deployment and management of applications and serverless functions in Edge 
devices was introduced In MS3. That was not listed in the initial requirements, but it 
was implemented to enhance overall flexibility and elasticity. 

“Cloud infrastructure layer is required by Rotterdam to deploy and operate 
containerized {1} analytics tasks. This layer can go from native cloud (i.e., based on 
Docker containers) to IaaS providing either a private or public cloud {3, 4} {8, 9}, 
including “traditional” virtualization solutions {2} in data centers. Current 
implementation relies on Docker for container technology {5, 6}, OpenShift flavor of 
Kubernetes for Container Management {7} and VMware as Hypervisor {10}. “ 

The Cloud infrastructure layer will be fully validated on the use case evaluation.  

We can then conclude that all the initial requirements had been met, and some 
enhancements had been implemented as well, to help achieve all technical 
requirements of the CLASS Cloud Computing Platform and software architecture. 
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3 Validation of the Technical Requirements of the 
CLASS Software Architecture  

As stated in (D2.1), after analysing the Business Requirements of the project, the 
following Technical Goals where identified: 

 Increase Software Productivity, in terms of Programmability, Portability and 
Performance. 

 Provide Real-time Guarantees. 
 Enable Flexibility and Elasticity. 

The Cloud Computing Platform helps achieving the requirements of software 
productivity: 

 It provides a way to efficiently manage the underlying computing resources, 
and to hide the complexity of the compute continuum to the programmer, 
thus contributing to programmability.  

 It oversees dealing with the internals of each specific technology (including 
edge and cloud), maximizing the performance capabilities, thus contributing 
to portability. 

 It is responsible of distributing and orchestrating the data analytics execution 
across the compute continuum, making it possible to exploit the capabilities 
of the architectures where the final functionalities will ride on, thus 
contributing to performance. 
 

To assess up to which point the Cloud Computing Platform contributes to 
Provide Real-time Guarantees and Enable Flexibility and Elasticity to the CLASS 
Software Architecture, we have conducted some tests. We have some 
parameters to measure: 

 Is the missed deadline3 a significant QoS metric? 
 After a missed deadline, what if a workflow takes less than the time 

required to bring up more workers? Is the scale in/out (horizontal 
elasticity) always the best choice? 

 How is elasticity affecting the execution time (Real-time guarantees)?  
In the next section we describe our tests and present our conclusions. 

3.1 Contribution to Real-time guarantees, flexibility, 
and elasticity 

To validate the improvements brought by the use of the Cloud Data Analytics Service 
Management and Scalability components of the CLASS platform, a set of tests have 
been done in the two clusters deployed in Modena Data Center. These two cluster 
infrastructures have the following configuration: 

 
3 A missed deadline indicates that a computation task is taking more time to complete than expected 
by QoS. A missed deadline starts a scale in/out in the number of tasks 
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 Openshift cluster (Figure 2): Cluster composed by 4 VMs with the following 
configuration: 

 1 master node: CentOS 7.5, 4 vCPUs, 16GB RAM, 80GB disk 
 3 worker nodes: CentOS 7.5, 1 vCPU, 8GB RAM, 80GB disk 

 
Figure 2 Openshift cluster in Modena Data Center 

 Kubernetes cluster (Figure 3): Cluster composed by 5 VMs with the following 
configuration: 

 1 master node: Ubuntu 18.04, 4 vCPUs, 8GB RAM, 60GB disk 
 3 worker nodes: Ubuntu 18.04, 4 vCPUs, 8GB RAM, 60GB disk  
 1 additional worker node: Ubuntu 18.04, 16 vCPUs, 8GB RAM, 60GB 

disk 

 
Figure 3 Kubernetes cluster in Modena Data Center 

The application tested in this environment is a COMPSs workflow application4, 
responsible for executing a java matrix multiplication (simulating a big-data analytics 
workload) in a distributed environment. This workflow uses one or more workers (i.e., 

 
4 https://hub.docker.com/r/bscppc/class-pycompss-rotterdam 
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slaves, instances, pods) to distribute its computation tasks and execute them in 
parallel. The number of workers is defined at launch time, but it can be scaled in or 
out during execution time depending on the assessment done by the SLA Manager 
component.  

To run these tests in both clusters we prepared two different scenarios:  

 COMPSs workflow without auto-scaling (Figure 4): In this scenario the 
COMPSs master application connects to the REST API provided by Rotterdam 
to launch a workflow in the Cloud environment (Openshift / Kubernetes 
cluster). First, the master defines the number of workers used to execute the 
parallel tasks (1), and then Rotterdam creates these workers (pods) in the 
cluster at deployment / launch time (2). Finally, the COMPSs master 
application connects to these workers to execute the computation tasks in 
parallel (3). Also, in this scenario the Rotterdam‘s adaptation engine will be 
disabled; thus, it will not scale out or in the number of workers during run time. 

 
Figure 4 Scenario I 

 COMPSs workflow with auto-scaling (Figure 5): In the second scenario, we will 
use the same COMPSs master application and Rotterdam with its adaptation 
engine enabled. An SLA will be created for each workflow at deployment / 
launch time. These SLAs will be used to check the missed deadlines of the 
workflow computation tasks (5). These missed deadline times are metrics 
generated by the COMPSs master application and they are stored in 
Prometheus (4). These values are related to the expected total execution time 
of the workflow. If there is a missed deadline (a computation task takes more 
time to complete than expected), it means that the workflow will probably last 
more than expected. In this case the SLA will generate a violation to notify 
Rotterdam that the workflow will last more than desired. After receiving this 
violation, Rotterdam will take the required actions: in this case, it will scale out 
the number of workers (6). Finally, the COMPSs master application will 
redistribute the computation tasks in the new worker nodes (7) before 
continuing the execution of the workflow. 
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Figure 5 Scenario II 

3.2 COMPSs workflow without auto-scaling 
The following table shows the results of running the same COMPSs workflow in a 
“static” environment (fixed number of workers for each execution and same 
conditions for each cluster), without the use of the features provided by Rotterdam. 
First, we tried with only one worker per workflow, then with three and so on. The 
results (execution time in ms) of these executions in OpenShift are in red, and the 
executions in the Kubernetes cluster are marked in black: 

Table 2 Workflows execution times (in ms) 

# 1 worker 3 workers 6 workers 9 workers 12 workers 

1 621786 617820 522618 407144 399776 

2 600364 571378 454466 415762 374831 

3 594230 566439 464412 416799 378867 

4 615012 564199 464266 424616 384708 

5 604306 578790 455849 413798 395198 

6 622013 567978 466922 416003 395060 

7 617566 565619 468000 411904 401901 

8 588759 565052 463951 405911 376899 

9 598650 572151 455543 410987 380001 

10 615332 582628 472430 410940 372098 

11 599151 636311 459940 411981 392121 

12 611090 593063 457041 405350 399140 

13 609145 595968 464953 410500 382955 

14 603099 599054 455312 404989 381880 
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15 631566 590142 471328 429132 398812 

 608804,6 584439,5 466468,7 413054,4 387616,5 

 

In principle we didn't notice any significant difference in the results obtained by 
executing the workflow in both the Kubernetes cluster and the OpenShift cluster.  

We can also see that if we assign only one worker to the workflow to execute all the 
internal computation tasks, the average duration of the whole workflow is around 608 
seconds. This duration decreases a bit, to 584 seconds, if we assign 3 worker nodes to 
execute these tasks in parallel. If we continue assigning more workers, then we can 
observe a great decrease in the execution time. 466 seconds with 6 workers, and 388 
with 12 workers. Of course, there is a limit in the number of workers we can assign to 
the workflow, before it stops decreasing the total duration. In principle, it seems that 
with 12-15 workers for this workflow we found this limit. 

 
Figure 6 Workflow execution times of scenario I 

3.3 COMPSs workflow with auto-scaling 
The following tables show the results of running the COMPSs workflow using the 
scalability features provided by Rotterdam. First, we present the results of executing 
the workflow with only one initial worker before starting to apply the autoscaling 
features. 

Table 3 Workflows execution times using scalability features with1 initial worker (in ms) 

# 1 -> 3 workers 1 -> 6 workers 1 -> 9 workers 1 -> 12 workers 

1 688950 601899 551234 531098 

2 691934 600123 567912 562983 

3 650124 595904 601832 544982 

4 668102 599400 575894 545722 
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5 710723 601543 569001 587153 

6 659100 602473 569012 555913 

7 667921 660888 578147 532450 

8 651098 599919 599157 530001 

9 688090 603751 580800 549550 

10 681012 615821 561613 578776 

  675705,4 608172,1 575460,2 551862,8 

As we can see in the previous table, if we start the workflow execution with only one 
initial worker, and then we scale out to three workers during the execution time, the 
final execution time is higher (about 70 seconds more) than executing the same 
workflow (only one worker) without scaling it out. This happens because of the 
following reasons:  

1. The missed deadline metric can appear several minutes after the workflow 
execution starts. 

2. The SLA Manager takes some time to detect that the COMPSs application 
needs more workers. As the SLA Manager evaluates the associated metrics 
every 20-30 seconds, it can take some time before detecting these violations. 

3. Rotterdam also needs some time to create the new workers and services 
required by the COMPSs workflow. 

4. The COMPSs master application also takes some time to detect that there are 
new free workers available. Once it detects these new workers, it also needs 
some time to resynchronize and redistribute the computation tasks in the new 
workers. 

We estimate that all of these "scalability" tasks can take between 60 and 90 seconds. 
And they can be run at the beginning or in the middle of the workflow execution. 

Only after scaling out from one worker to nine or more, we start to see an 
improvement in the execution time. 
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Figure 7 Workflow execution times of scenario II – 1 initial worker 

The following table presents the results of executing the workflow with three initial 
workers: 

Table 4 Workflows execution times using scalability features with 3 initial workers (in ms) 

# 3 -> 6 workers 3 -> 9 workers 3 -> 12 workers 

1 595918 540754 519871 

2 601912 541675 498912 

3 600112 553989 521812 

4 590001 555585 559093 

5 595567 571359 548762 

6 598591 572998 530925 

7 600159 569673 531973 

8 585051 573845 538479 

9 579141 544647 578245 

10 592625 555359 560823 

  593907,7 557988,4 538889,5 

Scaling up the workflow from three initial workers to six during the execution time 
brings no difference. In fact, the results show that the execution time is also a bit 
higher than without scaling up the application. This is the same situation we presented 
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in the previous tests. But when we scale to nine or 12 workers, we can see a small 
improvement in the final execution time. 

 

 
Figure 8: Workflow execution times of scenario II – 3 initial workers 

Long-time processes or applications can benefit from the Cloud Data Analytics 
Scalability. In the case of medium-time applications, like the one used in these tests, 
we get an improvement in the final execution time, but this improvement is not as 
optimal as desired. 

4 Architecture with time guarantee 
As a result of our tests, we have identified that the overhead of the scalation process 
can affect elasticity, especially in short-time applications. Adding more workers 
doesn’t always lead to better execution times and missed deadline might not be the 
optimal metric to drive QoS. As we focus on the development of cloud services 
towards real-time response, we should address this issue.  

What if we could foresee a situation that will lead to a longer execution time after a 
horizontal scaling out? What if we could predict the optimal number of workers for a 
desired execution time? In this section we will describe how we have improved our 
SLA Manager with an intelligent module, called SLA Predictor that helps us anticipate 
to missed deadlines by obtaining the optimal number of workers for a desired 
execution time, on a certain state of the system. 

4.1 Rotterdam and SLA Predictor integration 
To implement a predictive SLA management for COMPSs workflows, we have added a 
new service in the SLA Manager. This new service is responsible for calling the Machine 
Learning subsystem, called SLA Predictor (depicted in Figure 8), to get the 
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recommended number of workers for a COMPSs workflow based on a desired total 
execution time. 

 
Figure 8 Rotterdam and SLA architecture 

Instead of using the missed deadline metrics as described in 3.1 we use a new metric 
called “execution_time”, which express the desired total execution time of the 
workflow. This metric is defined in the JSON task definition5 (in the QoS properties 
field) used to deploy applications with Rotterdam. The following diagram (Figure 9) 
shows the new sequence for COMPSs workflows deployment using the new ML 
capabilities provided by the SLA Predictor component: 

 
5 The format of JSON files used to deploy applications / tasks in the Cloud Data Analytics Service 
Management and Scalability framework was described in (D4.4) and (D4.7) 
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Figure 9 New sequence diagram of COMPSs workflows 

1. The COMPSs master application defines (JSON) a new workflow, specifying the 
number of initial workers and a QoS for a desired total execution time. 

2. Rotterdam calls the SLA Manager to check that the QoS can be fulfilled with 
the given number of workers and desired execution time. 

3. The SLA Manager calls the ML subsystem to get the number of workers needed 
to complete the workflow in the time specified in the QoS. 

4. The ML subsystem (SLA Predictor) gets the information based on the status of 
the cluster, and the results of previous executions. It checks if the execution 
time will be fulfilled with the given number of workers. 

5. This information is sent back to Rotterdam. 
6. Rotterdam deploys the workers based on the information obtained by the SLA 

Manager. If more workers are needed to fulfil the defined execution time, then 
Rotterdam deploys more workers according to the result generated by the SLA 
Predictor. 

7. Rotterdam creates the SLA for this execution time. 

The new version of Rotterdam and the SLA Manager that integrates with the SLA 
Predictor is available at https://github.com/class-euproject/Rotterdam  

In section 4.3 you can see a description of the improvement in the execution time 
obtained with this new architecture, but let’s first describe the SLA Predictor 
component in deep.  

4.2 SLA Predictor 
This section describes the steps followed to implement a Machine Learning (ML) 
model to estimate a predicted execution time for an application based on the status 
of the environment by analyzing the metrics that Prometheus provides, and 
identifying the best set of them. It is split in different parts, from a data exploratory 
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analysis (EDA), through different approaches to build the model, to end exposing the 
model to be used by the SLA Manager.  

The different Python Notebooks describing the EDA phase and the different building 
model approaches, along with the microservice deployment, are available at 
https://github.com/class-euproject/SLA-predictor. 

 

4.2.1 Exploratory Data Analysis 
The first step is to analyse what we have available in our premises to predict those 
execution times. 

At this phase, we look into different metrics that Prometheus exposes over different 
integrated collectors: 

 Go collector6: collects the information from Go’s runtime such as details about 
go routines, system threads or garbage collector. 

 Node_exporter collector7: collects different metrics related to the system 
hardware and kernel. 

 Process collector8: collects basic information from the system proc file (CPU, 
memory, file limits, and more) 

All those metrics have been extracted from the Prometheus API, with the help of a 
Python client9, and transformed to a table to be later filtered and get those we want 
to analyse. In our case, we have filtered them to get only the metrics with a gauge 
type, where the values range over the time and fits in a timeseries object. Counter, 
summary, and histogram metric types have been discarded as do not comply our 
objective of having timeseries data. 

The total amount of metrics from Prometheus goes up to 259 metrics, but after the 
gauge filter, our input metrics went down to 157. 

With this set of metrics filtered, we can start our exploratory data analysis to extract 
relevant information of each metric, as details about the data distribution, 
stationarity, or trends. The following functions have been used: 

 get_timeseries_from_metric(metric_name,start_time,end_time,chunk_size): 
o this function executes a query in Prometheus to retrieve a timeseries 

of each metric for a given period of time. 
 draw_hist_norm(data,metric_name): 

o plot the timeseries data and compare it to a normal distribution. 
 get_skew(data):  

o to get if the distribution is symmetrical or skewed. 
 get_kurt(data): 

 
6 https://github.com/prometheus/client_golang  
7 https://github.com/prometheus/node_exporter  
8 https://github.com/deadtrickster/prometheus_process_collector  
9 https://github.com/AICoE/prometheus-api-client-python  
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o to know if the values are spread out, near the mean or the extremes, 
or close to a normal distribution. 

 get_adfuller(data): 
o perform a stationarity test to a metric data 

 get_hurst(data): 
o to get if the metric data contains trends, random walks, or mean 

reversion characteristics. 

An example of those functions for one metric is described in the following images: 

 
Figure 10. Timeseries data and summary 
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Figure 11. Timeseries distribution and comparation to a normal distribution 

 
Figure 12. Skewness, kurtosis, stationarity test and hurst exponent 

 

The last part of this EDA is focused on getting the correlation matrix for our metrics 
extracted. To do that, we first merge all the metrics data into one table and aggregate 
them in 1-minute frequency to have a common time distribution for all of them. 

Figure 13 shows the correlation matrix for all the gauge metrics: 
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Figure 13. Correlation matrix with all the metrics 

 

This correlation matrix contains a lot of unnecessary information (grey parts) due to 
different reasons, such as the metric data does not contain information, or all the 
values are the same. After filtering out the irrelevant metrics, in Figure 14 we get the 
following correlation matrix: 
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Figure 14. Correlation matrix with selected metrics 

 

From this EDA, we have extracted and listed in Table 5 the following 57 metrics that 
contains useful information for our objective, and will be used to build our ML model: 

 
 

name type Description 

1 go_goroutines gauge Number of goroutines that currently 
exist. 

2 go_memstats_alloc_bytes gauge Number of bytes allocated and still in 
use. 

3 go_memstats_gc_cpu_fraction gauge The fraction of this program's available 
CPU time used by the GC since the 
program started. 

4 go_memstats_gc_sys_bytes gauge Number of bytes used for garbage 
collection system metadata. 
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5 go_memstats_heap_alloc_bytes gauge Number of heap bytes allocated and still 
in use. 

6 go_memstats_heap_idle_bytes gauge Number of heap bytes waiting to be 
used. 

7 go_memstats_heap_inuse_bytes gauge Number of heap bytes that are in use. 

8 go_memstats_heap_objects gauge Number of allocated objects. 

9 go_memstats_heap_released_bytes gauge Number of heap bytes released to OS. 

10 go_memstats_heap_sys_bytes gauge Number of heap bytes obtained from 
system. 

11 go_memstats_last_gc_time_seconds gauge Number of seconds since 1970 of last 
garbage collection. 

12 go_memstats_mspan_inuse_bytes gauge Number of bytes in use by mspan 
structures. 

13 go_memstats_next_gc_bytes gauge Number of heap bytes when next 
garbage collection will take place. 

14 go_memstats_other_sys_bytes gauge Number of bytes used for other system 
allocations. 

15 go_memstats_stack_inuse_bytes gauge Number of bytes in use by the stack 
allocator. 

16 go_memstats_stack_sys_bytes gauge Number of bytes obtained from system 
for stack allocator. 

17 go_threads gauge Number of OS threads created. 

18 node_boot_time_seconds gauge Node boot time, in unixtime. 

19 node_entropy_available_bits gauge Bits of available entropy. 

20 node_filefd_allocated gauge File descriptor statistics: allocated. 

21 node_load1 gauge 1m load average. 

22 node_load15 gauge 15m load average. 

23 node_load5 gauge 5m load average. 

24 node_memory_Active_anon_bytes gauge Memory information field 
Active_anon_bytes. 

25 node_memory_Active_bytes gauge Memory information field Active_bytes. 
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26 node_memory_Active_file_bytes gauge Memory information field 
Active_file_bytes. 

27 node_memory_AnonHugePages_bytes gauge Memory information field 
AnonHugePages_bytes. 

28 node_memory_AnonPages_bytes gauge Memory information field 
AnonPages_bytes. 

29 node_memory_Buffers_bytes gauge Memory information field 
Buffers_bytes. 

30 node_memory_Cached_bytes gauge Memory information field 
Cached_bytes. 

31 node_memory_Committed_AS_bytes gauge Memory information field 
Committed_AS_bytes. 

32 node_memory_DirectMap2M_bytes gauge Memory information field 
DirectMap2M_bytes. 

33 node_memory_DirectMap4k_bytes gauge Memory information field 
DirectMap4k_bytes. 

34 node_memory_Dirty_bytes gauge Memory information field Dirty_bytes. 

35 node_memory_Inactive_anon_bytes gauge Memory information field 
Inactive_anon_bytes. 

36 node_memory_Inactive_bytes gauge Memory information field 
Inactive_bytes. 

37 node_memory_Inactive_file_bytes gauge Memory information field 
Inactive_file_bytes. 

38 node_memory_KernelStack_bytes gauge Memory information field 
KernelStack_bytes. 

39 node_memory_Mapped_bytes gauge Memory information field 
Mapped_bytes. 

40 node_memory_MemAvailable_bytes gauge Memory information field 
MemAvailable_bytes. 

41 node_memory_MemFree_bytes gauge Memory information field 
MemFree_bytes. 

42 node_memory_PageTables_bytes gauge Memory information field 
PageTables_bytes. 
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43 node_memory_SReclaimable_bytes gauge Memory information field 
SReclaimable_bytes. 

44 node_memory_SUnreclaim_bytes gauge Memory information field 
SUnreclaim_bytes. 

45 node_memory_Shmem_bytes gauge Memory information field 
Shmem_bytes. 

46 node_memory_Slab_bytes gauge Memory information field Slab_bytes. 

47 node_procs_running gauge Number of processes in runnable state. 

48 node_sockstat_TCP_alloc gauge Number of TCP sockets in state alloc. 

49 node_sockstat_TCP_mem gauge Number of TCP sockets in state mem. 

50 node_sockstat_TCP_mem_bytes gauge Number of TCP sockets in state 
mem_bytes. 

51 node_sockstat_sockets_used gauge Number of IPv4 sockets in use. 

52 node_time_seconds gauge System time in seconds since epoch 
(1970). 

53 node_timex_frequency_adjustment_rat
io 

gauge Local clock frequency adjustment. 

54 node_timex_maxerror_seconds gauge Maximum error in seconds. 

55 node_timex_offset_seconds gauge Time offset in between local system and 
reference clock. 

56 process_resident_memory_bytes gauge Resident memory size in bytes. 

57 process_start_time_seconds gauge Start time of the process since unix 
epoch in seconds. 

Table 5. Selected metrics description 

 

4.2.2 Data acquisition and training data generation 
The second step aims to create our training set that later will be used to train and 
validate the ML model. 

We started from 40 executions in the premises to extract the metric data linked to 
those executions. Different distributions of workers and hour of the day have been 
considered to catch how the workers affect in the final execution time, and also be 
able of catching different levels of stress of the instances.   

Table 6 contains a summary of the executions: 
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day Hour execution exectime workers 

1 2021/02/22 15:10 T1 617820 3 

2 2021/02/22 15:29 T2 571378 3 

3 2021/02/22 16:11 T3 566439 3 

4 2021/02/22 16:24 T4 564199 3 

5 2021/02/23 09:12 T5 578790 3 

6 2021/02/23 09:25 T6 567978 3 

7 2021/02/23 09:50 T7 565619 3 

8 2021/02/23 10:23 T8 565052 3 

9 2021/02/23 10:40 T9 572151 3 

10 2021/02/23 10:54 T10 582628 3 

11 2021/02/23 11:09 T11 636311 3 

12 2021/02/23 11:34 T12 593063 3 

13 2021/02/23 11:53 T13 522618 6 

14 2021/02/24 08:00 T14 454466 6 

15 2021/02/24 08:13 T15 464412 6 

16 2021/02/24 08:24 T16 464266 6 

17 2021/02/24 08:35 T17 455849 6 

18 2021/02/24 08:47 T18 466922 6 

19 2021/02/24 09:02 T19 468000 6 

20 2021/02/24 09:15 T20 709955 6 

21 2021/02/24 09:35 T21 693223 6 

22 2021/02/24 09:52 T22 595968 3 

23 2021/02/25 10:26 T23 463951 6 

24 2021/02/25 10:38 T24 455543 6 

25 2021/02/25 10:49 T25 472430 6 
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26 2021/02/25 11:00 T26 459940 6 

27 2021/02/25 11:15 T27 588759 1 

28 2021/02/25 11:29 T28 600364 1 

29 2021/02/25 11:48 T29 594230 1 

30 2021/02/25 12:06 T30 599054 3 

31 2021/02/25 12:32 T31 457041 6 

32 2021/02/25 12:45 T32 464953 6 

33 2021/03/01 08:01 T33 407144 9 

34 2021/03/01 08:12 T34 415762 9 

35 2021/03/01 08:24 T35 416799 9 

36 2021/03/01 08:38 T36 424616 9 

37 2021/03/01 08:50 T37 413798 9 

38 2021/03/01 09:02 T38 416003 9 

39 2021/03/01 09:13 T39 411904 9 

40 2021/03/01 09:25 T40 429661 9 

Table 6. Executions summary 

 

To create the training data, a function has been developed (based on the 
“get_timeseries_from_metric” from EDA) to retrieve the last hour of metrics until the 
execution starts, for the list of metrics extracted in the EDA section. At the end, each 
metric contains 60 rows and 57 columns for each execution. 

 

4.2.3 Model development 
The critical point is the model development. Different approaches have been followed 
to find the best model for our problem. 

4.2.3.1 Neural Networks 
Our starting point was based on creating a regression model to predict the execution 
time based on the metrics data extracted and the number of workers set by the SLA 
Manager.  

We split our training data in input variables (metrics + workers) and target (execution 
time). 
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To get this objective, we first research on neural network models for timeseries 
forecast using Keras10. This research can be summarized in Deep Neural Network 
models (Figure 15) and Recurrent Neural Network models, such as LSTM, (Figure 16) 
to capture how the timeseries evolve in relation to the execution time. 

 

 
Figure 15. Deep Neural Network definition 

 

 
Figure 16. LSTM definition 

 
We have discarded this approach because in our problem, the workers variable is very 
important to predict the execution time, not only the metrics analyzed, and this type 
of models set different variable importance based on internal implementations. In this 
scenario, the workers variable is not important to those models, and the same 
execution time is predicted based on a set of metrics values, whatever how many 
workers are set. 

 

 
10 https://keras.io/  
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4.2.3.2 Regression models 
After discarding the neural network models, a benchmark has been created using 
different regression models provided by Scikit-learn11, and a randomized grid of values 
for the parameters. The list of regression models used is the following: 

 LinearRegression()12 
 Ridge()13 
 Lasso()14 
 ElasticNet()15 
 Lars()16 
 LassoLars()17 
 BayesianRidge()18 
 SGDRegressor()19 
 KernelRidge()20 
 KNeighborsRegressor()21 
 RadiusNeighborsRegressor()22 

 
11 https://scikit-learn.org/stable/index.html  
12 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_mo
del.LinearRegression  
13 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge  
14 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso  
15 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.Elas
ticNet  
16  
17https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.Lars.html?highlight=lars#sklearn.linear_m
odel.Lars  https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html#sklearn.linear_model.Lass
oLars  
18 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html?highlight=bayesianr#s
klearn.linear_model.BayesianRidge  
19 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html#sklearn.linear_model.
SGDRegressor  
20 https://scikit-
learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html#sklearn.kernel_ridge.Ker
nelRidge  
21 https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors
.KNeighborsRegressor  
22 https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neig
hbors.RadiusNeighborsRegressor  
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 GaussianProcessRegressor()23 
 DecisionTreeRegressor()24 
 RandomForestRegressor()25 
 AdaBoostRegressor()26 
 GradientBoostingRegressor()27 

 

The training set defined for neural networks models does not fit with this kind of 
models. To adapt it, we have transformed the 60 rows for each execution to 1 by 
getting the mean, max, min and std values for each metric timeseries. Our new input 
variables are now this aggregated information and the number of workers. The target, 
that has not change, is execution time.  

Figure 17 details the score of each regression model with the best combination of 
parameters for one benchmark run: 

 
23 https://scikit-
learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html?highli
ght=gaussian#sklearn.gaussian_process.GaussianProcessRegressor  
24 https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionT
reeRegressor  
25 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensem
ble.RandomForestRegressor  
26 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.A
daBoostRegressor  
27 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ens
emble.GradientBoostingRegressor  
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Figure 17. Benchmark run of regression models 

 

We have discovered that the scores are sometimes overfitted and other times too bad. 
But the main issue is that we have the same behavior we have with neural networks 
for regression, the workers variable importance is too low that the same execution 
time is predicted all the time for different workers values. 
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4.2.3.3 Classification models 
At the end, we need to solve the workers variable importance, and to do that we have 
change our perspective to get our objective. 

This change is based on: 

 First, classify how stressed is our system by analysing the metrics data 
extracted in the EDA. It can be classified in 3 classes: low, normal, or high. 

 And second, return an estimated execution time for that level of stress and the 
number of workers. Those rules about “stress  workers  execution time”, 
have been extracted from the 40 experiments to create our training set, and is 
described in Table 7. Un upper value for high stress is set to 1000000 to 
indicate that the execution time could be too long. 

 

Workers Stress Execution time 
1 Low (550000,580000) 
1 Normal (580001,610000) 
1 High (610001,1000000) 
3 Low (550000,570000) 
3 Normal (570001,600000) 
3 High (600001,1000000) 
6 Low (430000,450000) 
6 Normal (450001,470000) 
6 High (470001,1000000) 
9 Low (390000,410000) 
9 Normal (410001,420000) 
9 High (420001,1000000) 

Table 7. Rules definition for linking workers, stress, and execution time 

 

The training set has been transformed in the same way as with the regression models 
to have the aggregated information for each execution.  

In this case, a preprocessing of the training set has been taken into consideration to 
balance it and getting a similar amount of data for each stress class we want to classify. 
Others preprocessing methods have been researched like a transformation of the 
variables by applying standardization and scaling the data and applying PCA 
techniques to reduce the amount of variable to those that contains most of the 
variance. 

The same benchmarking process has been followed but with a list of classifiers models: 

 LogisticRegression()28 

 
28 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic
#sklearn.linear_model.LogisticRegression  
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 SGDClassifier()29 
 KNeighborsClassifier()30 
 DecisionTreeClassifier()31 
 RandomForestClassifier()32 
 AdaBoostClassifier()33 
 GradientBoostingClassifier()34 
 MLPClassifier()35 

 

The summary of the benchmark run for the classifier models using the balanced 
dataset is described in Figure 18: 

 
29 https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html?highlight=sgdcla#sklea
rn.linear_model.SGDClassifier  
30 https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.
KNeighborsClassifier  
31 https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTr
eeClassifier  
32 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemb
le.RandomForestClassifier  
33 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.Ad
aBoostClassifier  
34 https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ense
mble.GradientBoostingClassifier  
35 https://scikit-
learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_net
work.MLPClassifier  
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Figure 18. Benchmark run of classification models 

 

4.2.4 Model selected 
Based on the result from the classifier models benchmark, the KNeighborsClassifier 
model has been selected to be the best model for our scenario, with an accuracy of 
0.8666666666666667. 

The best combination of parameters for this model are: 

 Weights: “distance” 
 N_neighbors: 6 
 Algorithm: “kd_tree” 

After evaluating the model, the confusion matrix and classification reports are 
provided in Table 8 and Table 9, where we can discover that the model classifies the 
stress level of the system with a high accuracy and precision. This model sometimes 
predicts that a normal stress level of the system is high, which is an error that we could 
manage. 
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 Predicted label 
High  Low  Normal 

Tr
ue

 
la

be
l High 4 0 0 

Low 0 5 0 
Normal 2 0 4 

Table 8. Confusion matrix 

 
 precision recall F1-score Support 

High 0.67 1.00 0.80 4 
Low 1.00 1.00 1.00 5 

Normal 1.00 0.67 0.80 6 
Micro avg 0.87 0.87 0.87 15 
Macro avg 0.89 0.89 0.87 15 

Weighted avg 0.91 0.87 0.87 15 
Table 9. Classification report 

 

4.2.5 Model exposition 
SLA Predictor has been exposed as a microservice to be accessible using REST calls. To 
achieve this objective, the microservice is encapsulated in a Docker container using 
Python and Flask36. 

The “predictSLA” method could be called by passing the number of workers and the 
desired execution time from the SLA Manager. It performs a query to Prometheus to 
retrieve the last hour of our selected metrics, classify it to know how much the system 
is stressed, and return the most similar number of workers that fits the input data 
based on the rules defined for “stressworkersexecution time”. If there is not a 
valid number of workers to the SLA requirements, it returns -1. 

Some examples of this endpoint: 

 /predictSLA?workers=3&exectime=620000  
o Internal result: [(1, (580001, 610000)), (3, (570001, 600000)), (6, 

(450001, 470000)), (9, (410001, 420000))] 
o Output: 3 

 /predictSLA?workers=3&exectime=520000 
o Internal result: [(6, (450001, 470000)), (9, (410001, 420000))] 
o Output: 6 

 

 
36 https://flask.palletsprojects.com/en/1.1.x/  



D4.6 Validation of the Cloud Data Analytics Service Management and Scalability components  
Version 1.1  

40 
 

4.2.6 Future work 
To continue developing more features and capabilities, some options can be taken 
into consideration. One possible update is adding more experiments to the training 
data with a wide variety of different combinations of workers and stress system. 

Another update is oriented of improving the classification model by implementing 
recurrent neural networks to identify how the values evolve instead of having a static 
image of the system. This path is hard to follow due to the problems described on this 
section with a regression perspective, so is needed to take a particular care when 
researching this line. 

Finally, this solution is easily adaptable to other applications by defining new rules for 
that executions, and also it is possible to retrain the model to classify the system stress 
level along the time with other behaviors that could appear. 

4.3 Validation of the architecture with time guarantee  
We have done a set of tests using this new component (SLA Predictor). In these tests 
we have used the same application described in section 3.1. On one side, we have 
defined an initial number of workers for the COMPSs workflow. And on the other side, 
we have defined a total execution time in the QoS parameters. This way, Rotterdam 
and the SLA Manager create an SLA where the constraint is to execute the workflow 
in the desired time or less (time guarantee).  

The objective of these experiments is to show the impact of using the SLA Predictor 
before deploying the application in the Cloud and compare it with the previous 
experiments. Instead of scaling out the application during the execution time, now we 
use ML technics to predict the behaviour of the workflow in the Cloud, to adjust the 
initial number of workers before launching the application. 

Here follow the two sets of experiments, and the result of 6 executions each. The table 
shows REAL final times obtained with the number of workers returned by the SLA 
Predictor: 

1. Experiment 1 in COMPSs master: 
o Initial number of workers: 3 
o Desired total execution time: 540000 ms 
o Result of the call to SLA Predictor: 6 workers 

  6 workers 
1 503947 
2 525037 
3 521731 
4 528276 
5 542583 
6 539082 
Mean 526776 
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Table 10 – Real execution times obtained after calling SLA Predictor with Target Execution time < 540000 and 3 
workers (in ms) 

2. Experiment 2 in COMPSs master: 
o Initial number of workers: 3 
o Desired total execution time: 480000 ms 
o Result of the call to SLA Predictor: 9 workers 

  9 workers 
1 487218 
2 477542 
3 461500 
4 479326 
5 481609 
6 472977 
Mean 476695 

Table 11- Real execution time obtained after calling SLA Predictor with Target Execution time < 480000 and 3 
workers (in ms) 

Although the results of executing the first set of experiments (initial workers: 3, 
execution time: 540000 ms - Table 10) show that the desired execution time (SLA) is 
fulfilled (t=526776 ms), we can observe that the average execution time is higher than 
the results we obtained by executing the same workflow with 6 initial workers without 
using the scalability features (t=466469 ms) shown in Table 2. The same applies to the 
second set of experiments shown in Table 11, compared with the results in Table 2 
with 9 workers.  

From the logs provided by the SLA Predictor, we have seen that some of these last 
experiments were executed on the most stressed level of the system (when running 
the first experiments we didn’t have this information, provided by SLA Predictor).  
[(6, (470001, 1000000)), (9, (420001, 1000000))] 
[pid: 48|app: 0|req: 23/39] 192.168.7.28 () {34 vars in 488 bytes} [Tue Mar 16 
08:20:37 2021] GET /predictSLA?workers=3&exectime=540000 => generated 1 bytes in 
12138 msecs (HTTP/1.1 200) 2 

Also, we have seen that the execution times predicted by the SLA predictor, tend to 
be more optimistic than real final execution times obtained on the experiments: 
[(6, (450001, 470000)), (9, (410001, 420000))] 

[pid: 49|app: 0|req: 17/40] 192.168.7.28 () {34 vars in 488 bytes} [Tue Mar 16 
08:36:04 2021] GET /predictSLA?workers=3&exectime=480000 => generated 1 bytes in 
14645 msecs (HTTP/1.1 200) 2 headers in 78 bytes (1 switches on core 0) 

The results obtaining are constrained by: 

- The level of stress of the cluster and network infrastructures. 

- The initial data used for training the model. 

From all 12 sample experiments, the average execution time always fulfils the SLA, 
and in 9 cases it's lower than the target value. Thus, there are cases (3) where the SLA 
manager generates a violation. This is because the SLA Predictor selects the minimum 
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number of workers, to avoid scalation and its overhead and thus sometimes having a 
slightly higher execution time than desired. 

Now, to really assess the benefits of the SLA Predictor, we must compare these new 
results with the results of scaling out the number of workers during execution time. 
When avoiding to scale from 3 to 6 workers , we can see an improvement: 526776 ms 
vs 593907 ms (Table 10 (mean) vs Table 4 (‘3->6’ mean)). The same applies when 
avoiding to scale the number of workers during execution time from 3 to 9 workers: 
476695 ms vs 557988 ms ( Table 11 (mean) vs Table 4: ‘3->9’ mean).  

We can conclude that with the SLA Predictor and the new QoS metric (execution time 
vs deadline misses), we avoid the generation of violations in most cases, and we 
guarantee the execution time even in stressed states of the system. We have also 
identified some elements susceptible to be improved in the future. 

4.4 Demonstration 
To show the improvement in execution time from the initial architecture to the 
architecture with SLA Predictor, we have recorded a demonstration in a video that is 
available at the CLASS intranet: 

https://class-project.eu/user/login  

A dedicated user has been created for demonstration purposes, with limited access to 
deliverables and related videos. The credentials to access this service are the 
following: 

Username: EC_user 

Password: @Hz.52qXXF#K23 

After logging in, click on “Intranet”, the demonstration videos and files of this 
deliverable are located in “PU_D4-6Report” directory. 

5 Result of the Validation 
In Section 2 we verified that the Cloud initial requirements identified in MS1 had been 
met in MS3 as presented in Final release of the Cloud Data Analytics Service 
Management and Scalability components. Some enhancements, not identified as 
initial requirements, had been implemented as well. We can conclude that all initial 
requirements have been achieved. 

In Section 3 we verified that the Technical Requirements of the CLASS Software 
Architecture have been met, but that there was a margin to improve in providing real-
time guarantees, as described in section 3.1. 

In Section 4 we presented a new architecture to secure time guarantee, and a new 
component called SLA Predictor. The results of the experiments in section 4.3 allow us 
to assert that all the Technical Requirements of the CLASS Software are met by the 
Cloud Data Analytics Service Management and Scalability components. 
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6 Conclusion 
This deliverable reported on the work done in WP4 from M30 to M39. The target at 
milestone MS4 of task T4.4 Validation of Cloud Computing side has been successfully 
achieved and documented in this deliverable. 

This deliverable also presents the code and a demonstration video of the 
improvements implemented into the Final release of the Cloud Data Analytics Service 
Management and Scalability components. 

The progress done in the last milestones has helped us to achieve all WP4 objectives 
successfully.  

This validation will be complemented with the Use Case Evaluation that will be 
presented in D1.6 in M42. 
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