

D4.7 Final release of the Cloud Data Analytics
Service Management and Scalability

Components

Version 1.0

Document Information
Contract Number 780622

Project Website https://class-project.eu/

Contractual Deadline
M29, May 2020

(Due to COVID situation this deliverable has been
submitted on M31, July 2020)

Dissemination Level PU

Nature DEM

Author(s) Roi Sucasas (ATOS)

Contributor(s) (ATOS)

Reviewer(s) Erez Hadad (IBM); Elli Kartsakli (BSC)

Keywords
Cloud, Edge, WP3, WP4, Rotterdam, Container-as-
a-Service (CaaS), Docker, Kubernetes, Openshift,
container orchestration

Notices: The research leading to these results has received funding
from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No “780622”.

© 2018 CLASS Consortium Partners. All rights reserved.

https://class-project.eu/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

2

Change Log

Version Date Author Description of Change

V0.1 20/07/20 Roi Sucasas
(ATOS) First draft version

V0.2 29/07/20 Roi Sucasas
(ATOS) Merged contribution from partners

V0.3 30/07/20 Erez Hadad
(IBM) Internal Revision

V1.0 31/07/20 Elli Kartsakli
(BSC) Final Version, Ready to EC revision

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

3

Table of contents
Table of contents ... 3

Table of Figures .. 5

Terms and Abbreviations ... 6

Executive Summary .. 7

1 Introduction .. 8

1.1 About this deliverable .. 8

1.2 Relation to other deliverables and work packages 8

1.3 Structure of the document .. 9

1.4 Glossary adopted in this document ... 9

2 Functional Description .. 11

2.1 Transparent lifecycle management of data analytic workloads in multiple
Cloud and Edge clusters ... 12

2.2 Creation and management of connections to multiple Cloud and Edge
containers orchestrators .. 12

2.3 Deployment and management of applications and serverless functions in
Edge devices ... 13

2.4 Real-time QoS guarantees, SLA management and data analytics service
scalability .. 13

2.5 Performance monitoring of data analytics workloads and infrastructures 14

3 Technical description .. 14

3.1 Major changes in final release ... 14

3.2 Baseline Technologies and dependencies ... 15

3.3 Architecture ... 17

3.3.1 Rotterdam .. 19

3.3.2 SLA Manager & Monitoring tools .. 20

3.4 Deployment Diagrams ... 21

3.4.1 CLASS Cloud standalone environment in Modena Data Center 23

3.5 Interfaces Provided .. 23

3.5.1 Rotterdam .. 23

3.5.2 SLA Manager .. 25

4 Installation and usage guides ... 27

4.1 Packages distribution and requirements ... 27

4.2 Installation ... 27

4.2.1 Container orchestrator .. 27

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

4

4.2.2 Monitoring tools .. 28

4.2.3 Rotterdam .. 28

4.2.4 SLA Manager .. 30

4.3 Usage .. 31

4.3.1 Rotterdam tasks ... 34

4.3.2 QoS templates .. 36

4.3.3 Infrastructures ... 36

4.3.4 Serverless functions ... 37

4.3.5 Usage example: deployment and scalability ... 38

4.3.6 Usage example: MicroK8s in Edge device .. 42

5 Demonstration .. 47

5.1 Scenario description .. 47

5.2 Integration with COMPSs ... 48

5.2.1 Demo .. 49

5.3 Management of multiple clusters in Edge and Cloud 55

5.3.1 Demo .. 56

6 Conclusion .. 61

References ... 62

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

5

Table of Figures
Figure 1 – CLASS architecture & WPs ... 8
Figure 2 – Cloud computing platform in the context of the CLASS architecture 17
Figure 3 – Rotterdam and internal components ... 19
Figure 4 – SLA Manager and monitoring tools components 21
Figure 5 – Data Analytics Service Management and Scalability Cloud Infrastructure 22
Figure 6 – Data Analytics Service Management and Scalability Multi Cloud and Edge
Infrastructure ... 22
Figure 7 – Modena Data Center deployment .. 23
Figure 8 – OKD Web interface – Rotterdam deployment ... 29
Figure 9 – OKD Web interface – Rotterdam .. 29
Figure 10 – OKD Web interface – SLA Manager .. 31
Figure 11 – OKD Web interface - Rotterdam and SLA Manager running in “default”
namespace ... 31
Figure 12 – Rotterdam Swagger REST API – Tasks methods 32
Figure 13 – Rotterdam REST API – Infrastructure and QoS methods 32
Figure 14 – OKD GUI – empty “class” project / namespace 38
Figure 15 – OKD GUI – “default” project / namespace with Rotterdam and the SLA
Manager ... 38
Figure 16 – Rotterdam (swagger) REST API – QoS template definition 39
Figure 17 – Rotterdam (swagger) REST API - Task definition 39
Figure 18 – Rotterdam (swagger) REST API – Task deployment result / response 40
Figure 19 – OKD GUI – nginx server deployment in “class”namespace 40
Figure 20 – OKD GUI - nginx server deployed and ready .. 41
Figure 21 – nginx server application ... 41
Figure 22 – SLA Manager REST API – SLA .. 42
Figure 23 – OKD GUI - nginx server’s instances are halved after SLA violation 42
Figure 24 – Rotterdam (swagger) REST API – Infrastructure creation........................ 43
Figure 25 – Rotterdam (swagger) REST API – Infrastructure creation response 43
Figure 26 – Rotterdam (swagger) REST API – list of managed infrastructures........... 44
Figure 27 – Rotterdam (swagger) REST API – MicroK8s deployment 44
Figure 28 OKD GUI – Rotterdam logs (MicroK8s deployment) 45
Figure 29 – Rotterdam (swagger) REST API – task deployment 45
Figure 30 – Rotterdam (swagger) REST API –response of task deployment 46
Figure 31 – nginx server application running in the Edge device 46
Figure 32 – Edge device console ... 46
Figure 33 – Openshift (Modena Data Center) and Edge device used in the demos .. 48
Figure 34 – Integration with COMPSs master application .. 49
Figure 35 – Management of multiple clusters and applications 55

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

6

Terms and Abbreviations
Acronym Definition

D Deliverable

WP Work Package

M Month

MS Milestones

QoS Quality of Service

IoT Internet of Things

SLA Service Level Agreement

K8s Kubernetes1

MicroK8s2 Micro Kubernetes

COMPSs Component Superscalar framework (from BSC)

OKD Openshift Kubernetes distribution

UCs Use Cases

1 Kubernetes is an open-source container-orchestration system for automating application deployment,
scaling, and management: https://kubernetes.io/
2 Kubernetes version for IoT, Edge devices, workstations etc. https://microk8s.io/

https://kubernetes.io/
https://microk8s.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

7

Executive Summary
This deliverable (D4.7) accompanies the final release of the “Cloud Data Analytics
Service Management and Scalability” components for the CLASS project. This includes
the results of WP4 tasks, “4.2. Data Analytics Service Management” and “4.3. Data
Analytics Service Scalability”, done between months M16-M29, and the ATOS
contributions to “WP3 Edge Computing” in task “3.2. Develop, experiment and
evaluate edge platform agent for analytics”.

As both deliverables D4.3 (“Final release of the Cloud Data Analytics Service
Management components“) and D4.5 (“Final release of the Cloud Data Analytics
Service Scalability components”), as planned according to the CLASS DOW [1], are very
related to each other, it has been decided to merge3 their content into this new
deliverable, thus providing a more complete picture of the envisioned Cloud
computing environment.

The scope of the current deliverable comprehends:

 A functional and technical description of the final release of the cloud (and
edge) standalone environment, including the requirements, detailed designs
and scientific findings

 the installation manuals and technical documentation of the different software
components found in the overall final prototype

3 This change has been communicated to the Project Officer and is in the process of being formally
approved through an amendment.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

8

 Introduction

 About this deliverable
The main goal of CLASS is to deliver a platform to support the development of big data
analytics in Edge and Cloud for Smart Cities and Connected Cars Use Cases, including
the provision of QoS guarantees. In this context, one of the main objectives is to
provide a cloud computing environment to allow developers to focus on tasks and not
on cloud computing specific details.

Following the requirements, specifications and results presented in MS1 and MS2
deliverables, D4.1 [2], D4.2 [3] and D4.4 [4], the purpose of this deliverable is to
present the work done in the third phase (“Two-stage Data-in-motion Real-time
Analysis (M16-M29)”) of the project, which includes the release of a cloud
environment coordinated with the edge layer for data analytics service management
and scalability. It also merges the envisaged content of deliverables D4.3 and D4.5 into
one single document.

 Relation to other deliverables and work packages
Figure 1 shows the relationship between the CLASS WPs. This document includes not
only the work done in WP4, but also the contributions to WP3 in the context of the
cloud data analytics service management and scalability set of tools developed during
M16-M29. During the previous period, the focus has been placed on the cloud
environment part. On one side, during this period we improved the work done in this
area, and on the other side, we also developed new features that cover WP3 activities,
such as task 3.2, “Develop, experiment and evaluate edge platform agent for
analytics”.

Figure 1 – CLASS architecture & WPs

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

9

Finally, the results of this deliverable will be part of the validation deliverables from
WP3 (“Validation of the CLASS edge computing subsystem”) and WP4 (“Validation of
the Cloud Data Analytics Service Management and Scalability components“) to be
presented on M36.

 Structure of the document
This document is structured as follows:

− Section 1 contains the introduction, the glossary of terms used in this
document, and the description of the document’s structure.

− Section 2 presents the functional description of the released Cloud and Edge
environment platform.

− Section 3 describes the main changes included in this final release and the
technical aspects of this platform, including the architecture of the different
platform elements, the exposed interfaces and the execution environment.

− Section 4 presents the installation and usage guides, including the links to the
code repositories and demo videos.

− In section 5, two demonstration scenarios of the Cloud and Edge environment
platform are presented.

− And finally, section 6 presents the conclusion.

 Glossary adopted in this document
This section contains the list of terms used in this deliverable in order to clarify its
meaning to the readers:

− Rotterdam is the Cloud Data Analytics Service Management and Scalability
component responsible for the deployment and management of the tasks
running on the Cloud and Edge containers orchestrators it manages.

− A Rotterdam Task is an application or a long-running service that runs on
containers orchestrators managed by the Cloud and Edge environment system.
It encapsulates all the elements and properties needed to run the application
in a container orchestrator. In the case of Kubernetes and Openshift4, a
Rotterdam Task is composed by the Deployment, Services and Pods entities
needed to be defined and created before running the correspondent
containers in the platform. Apart from this information, a Rotterdam task also
defines the following properties:

o The name and URL of the containerized application
o The cluster identifier (where to run the application)
o The dock identifier (in which namespace of the cluster the container

orchestrator will run the application)
o Number of initial instances or replicas
o QoS requirements and policies (e.g., scaling out the application if there

is a violation)

4 Openshift Community Distribution (OKD) of Kubernetes optimized for continuous application
development and multi-tenant deployment: https://www.okd.io/

https://www.okd.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

10

{
 "name": "redis-app",
 "dock": "class",
 "qos": {
 "name": "NoMissedDeadlines",
 "description": "scale out task if missed deadlines > 0"},
 "replicas": 5,
 "containers": [{
 "image": "redis",
 "ports": [{
 "containerPort": 6379,
 "hostPort": 6379,
 "protocol": "tcp"}]}]}

Rotterdam task example: definition of a redis application with QoS requirements

− A Rotterdam Dock is a logical workspace for Rotterdam tasks, used to abstract
away the resources and elements of the underlying infrastructure to be shared
among a set of tasks. In Kubernetes and Openshift, it is called a namespace or
project.

− A Rotterdam Infrastructure defines a container orchestrator, its location, and
the properties needed to access it. Rotterdam supports the following K8s
distributions: Kubernetes, Openshift and MicroK8s.

− A COMPSs5 Workflow is an application composed by a set of data analytics
functions that can be distributed and executed as asynchronous parallel
operations.

− COMPSs Tasks (or workflow tasks) are the analytics functions which are part
of a workflow.

− Kubernetes (Openshift) Pods are the smallest deployable units managed in
Kubernetes and Openshift. Usually, one Pod corresponds to one docker
container.

− A Kubernetes (Openshift) Deployment is a Kubernetes element that describes
an application’s lifecycle. Usually, deployments are composed by one or more
pods.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: redis-deployment
 labels:
 app: redis
spec:
 replicas: 3
 selector:
 matchLabels:
 app: redis
 template:
 metadata:

5 COMP Superscalar (COMPSs) is a framework for the development and execution of applications in
distributed infrastructures : https://github.com/class-euproject/compss

https://github.com/class-euproject/compss

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

11

 labels:
 app: redis
 spec:
 containers:
 - name: redis
 image: redis:latest
 ports:
 - containerPort: 6379

Deployment example: definition of a redis application

− A Kubernetes (Openshift) Service is an abstraction which defines a set of pods
and a policy to access these pods. In other words, services are used to expose
applications running on Kubernetes or Openshift.

− Modena Data Center is the location of the main Cloud testbed enviroment
used in WP4 and UCs.

 Functional Description
The final version of the standalone Cloud and Edge environment components presents
the improvements and changes made to the platform features presented in the first
release, and described in deliverables D4.1 [2], D4.2 [3] and D4.4 [4]. This release also
presents the implementation of new infrastructure and service management features
for the data analytics service developers. As it was stated in these previous
deliverables, the main objectives of the Cloud Data Analytics Service Management and
Scalability system can be summarized as follows:

− To provide a transparent deployment and lifecycle management of data
analytics resources, including the logical and physical orchestration of Cloud
and Edge resources and the applications running on them.

− To assess the fulfilment of data analytics services’ QoS requirements by
creating, managing and evaluating SLAs, including the implementation of a
dynamic adaptation and orchestration mechanism of Cloud and Edge
resources to ensure the QoS of these analytics services.

These two objectives are completely fulfilled with the improvement of the features
delivered in the first release, and with the new features implemented during this third
project phase:

− Transparent lifecycle management of data analytic workloads in multiple Cloud
and Edge clusters

− Creation and management of connections to multiple Cloud and Edge
containers orchestrators (e.g. K8s, MicroK8s and Openshift)

− Deployment and management of applications and serverless functions in Edge
devices

− Real-time QoS guarantees, SLA management and data analytics service
scalability

− Performance monitoring of data analytics workloads and infrastructures

This section provides a full description of all these functionalities.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

12

 Transparent lifecycle management of data analytic
workloads in multiple Cloud and Edge clusters

One of the main objectives of the Cloud Data Analytics Service Management and
Scalability set of tools is the simplified deploymet and lifecycle management of data
analytics tasks in multiple containerized orchestrators located in different places, in
Cloud and Edge. As it was described in the first release deliverable (D4.2 and D4.4),
this set of tools was already able to deploy and manage these kinds of applications in
one cloud infrastructure. This has been improved for this final release by enabling the
deployment and management of these applications in more than one orchestrator at
a time. Thus, this new release supports the management and monitoring of multiple
applications and workflows running on multiple containerized orchestrators at the
same time, allowing users to select the cluster or location that better fits their needs
together with other properties.

In order to launch a data analytics workflow previously packed as a containerized
application (i.e. a docker image), a user needs to define the following properties:

− The identifier of the container orchestrator located in the cloud or in an Edge
device. If not defined the system will use the default cluster, which should be
the main orchestrator deployed in the Cloud.

− The containerized application URL and the initial number of instances /
replicas. In the case of COMPSs workflows this number corresponds to the
number of workers required by the master.

− The QoS constraints defined for this application or workflow, which are used
later to generate the SLAs. These QoS requirements can be defined in a simple
JSON format or by using an identifier of a previously defined QoS template.

Internal complexities are transparent to final users. This means that these users don’t
have to take care of the management and configuration of the orchestrators, clusters
and servers elements.

 Creation and management of connections to multiple
Cloud and Edge containers orchestrators

By default, the Cloud Data Analytics Service Management and Scalability system
manages one Cloud infrastructure (i.e., Openshift cluster located in Modena Data
Center). This default Cloud environment is the one presented in the first release
deliverables and the one that will be used by the Use Cases in the final evaluation. This
feature has been improved during the last year to make it possible for final users or
service providers the deployment of their applications in different locations. The same
way Kubernetes Cluster Federations do, this new feature gives them the possibility to
create new connections to other cloud and edge infrastructures by defining the
locations of existing containers orchestrators and the way to access them. This way
they have more choices to deploy their applications according to their needs.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

13

The final version of the Cloud and Edge environment system supports the deployment
and management of data analytics workflows in the following containers
orchestrators:

− Kubernetes
− Openshift
− Micro Kubernetes (MicroK8s)

Users must only define the identifier of the cluster or orchestrator, in order to deploy
their applications in a specific place. They do not need to care about the internal
complexities required to deploy and manage applications in different clusters.

 Deployment and management of applications and
serverless functions in Edge devices

Apart from connecting and managing multiple orchestrators, one new feature
presented in this final release is the ability to install, at runtime, new MicroK8s
instances in "empty" Edge and Cloud devices, and to manage them. First, users must
define a connection to a remote device. This device requires to have no container
orchestrator installed in it. Then, users can use this connection to deploy in this remote
device a MicroK8s instance.

MicroK8s is a lightweight version of Kubernetes, very easy to install, which is made for
Edge, IoT and developer workstations. It supports Windows, MacOS and a wide range
of Linux distributions, and it comes together with plugins for Prometheus (monitoring)
and Knative (serverless functions).

Furthermore, the Cloud Data Analytics Service Management and Scalability system
supports not only containerized applications, but also serverless functions, or in other
words, users can also use this platform to execute functions in Edge devices with
Kubeless6 deployed on MicroK8s. When deploying a MicroK8s in an Edge device, the
user can include the Kubeless functionality to enable the execution of functions. Later,
the user can deploy there functions the same way a user can deploy tasks in the
available orchestrators or locations.

 Real-time QoS guarantees, SLA management and data
analytics service scalability

Users and service providers can specify a set of QoS requirements or constraints for
their data analytics applications. These QoS requirements can include, for example,
the maximum number of missed deadlines for workflows tasks, the latency of a
specific application, or any other metrics collected by the monitoring tools used by the
system. Users can also define the actions they want to execute in the case the system
detects that these QoS requirements are not met. All these specifications are defined
at deployment time, before launching a workflow or application.

6 Kubeless is a Kubernetes-native serverless framework for deploying and managing serverless
functions: https://kubeless.io/

https://kubeless.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

14

These requirements and actions definitions are then transformed into SLAs (and their
guarantees), so they can be monitored by the platform. The platform checks during
runtime that these guarantees are met by constantly gathering and evaluating the
metrics associated to them.

In case the SLA management and monitoring parts of the system detect that one or
more guarantees are not met, they will generate violations. These violations are
processed later by other components of the system to take the required actions. These
actions offer a dynamic adaptation and orchestration of Cloud and Edge resources
according to the actions defined by the user, like the automatic scalability of the
applications that caused the SLA violations. These actions are also transparent to the
user.

 Performance monitoring of data analytics workloads and
infrastructures

The platform relies on a set of monitoring tools responsible for gathering the metrics
defined in the SLAs. These tools are integrated with the Cloud Data Analytics Service
Management and Scalability system, and include the following applications:

− Prometheus
− Prometheus Pushgateway
− Grafana

The Prometheus instance deployed in the main Cloud infrastructure (i.e., Openshift
cluster from Modena Data Center) collects metrics from the cloud infrastructure and
the applications running on it. It also connects to the Prometheus Pushgateway, which
is used by other applications to expose custom metrics. Grafana7 is used to visualize
the metrics collected by Prometheus.

Edge devices with MicroK8s also make use of their Prometheus instances. These
Prometheus instances can be connected to the main platform.

 Technical description
This section describes the final architecture of the Cloud platform environment and its
components, including the changes with respect to the previous release version
described in deliverables D4.2 and D4.4.

 Major changes in final release
The Cloud Data Analytics Service Management and Scalability components from final
release present some major changes with respect to the architecture and technical
characteristics defined and presented in previous release. These major changes
include the following:

− Added support for multiple infrastructures / containers orchestrators
(described in section 2.1 and 2.2).

7 https://grafana.com/

https://grafana.com/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

15

− New Edge layer added to the platform. As described in section 2.3, the system
now supports the deployment and management of MicroK8s and Kubeless in
Edge devices. This includes the applications and serverless functions running
on them.

− Improvement and extension of the CaaS API Gateway. New methods have
been added to provide external users with new functionalities.

− The SLA Manager can read from multiple sources (monitoring tools). This
module was updated to get metrics from more than one source (e.g.
Prometheus) at the same time.

− The SLA Manager REST API was also updated to access the new functionalities
implemented in this project phase.

− Rotterdam application has been rewritten in Golang. First version was written
in Clojure, which requires the JVM8 to run. Thus, the new dockerized version
requires less resources and space to run.

− The JSON definitions used to create and launch applications and COMPSs
workflows in Rotterdam have been simplified. Old JSON files are still valid.

 Baseline Technologies and dependencies
The following baseline technologies are used within this component:

Name Description Version

SLA Manager
[5]

The SLA Manager is a framework that manages service-level
agreements between service providers and consumers. It is
being developed by ATOS under an open source license (Apache
License 2.0), and it has been used in another H2020 project,
mF2C [6].

https://github.com/mF2C/SlaManagement

-

Prometheus Prometheus is an open source monitoring system, written in
Golang, and released with Apache License 2.0. This tool can be
integrated with container orchestrators like Openshift and
Kubernetes, and it can get metrics from the infrastructures and
applications.

https://prometheus.io/

-

Pushgateway Prometheus Pushgateway is an intermediary application that
connects Prometheus with custom applications. It can be used
by these applications to push custom metrics to Prometheus. It
is also written in Golang and released with Apache License 2.0.

https://github.com/prometheus/pushgateway

-

Openshift
Origin / OKD

Openshift Origin / OKD is a distribution of Kubernetes, licensed
under Apache License 2.0. This platform adds a set of layers to 3.10

8 Java Virtual Machine: https://docs.oracle.com/javase/10/vm/java-virtual-machine-technology-
overview.htm

https://github.com/mF2C/SlaManagement
https://prometheus.io/
https://github.com/prometheus/pushgateway
https://docs.oracle.com/javase/10/vm/java-virtual-machine-technology-overview.htm
https://docs.oracle.com/javase/10/vm/java-virtual-machine-technology-overview.htm

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

16

“vanilla” Kubernetes, enhancing the security and management
features.

https://www.okd.io/

Kubernetes Kubernetes is an open source container orchestrator platform,
written in Golang, and released with Apache License 2.0.
Originally designed by Google, Kubernetes is now maintained by
the CNCF9 (Cloud Native Computing Foundation).

https://kubernetes.io/

-

MicroK8s MicroK8s is a lightweight distribution of Kubernetes that can be
installed in Edge devices and small VMs. 1.17

Knative Knative is a serverless framework that runs on Kubernetes and
MicroK8s. Knatives makes it possible to run serverless functions.

https://knative.dev/

-

Kubeless Kubeless is another serverless framework that runs on
Kubernetes and MicroK8s.

https://kubeless.io/

-

Grafana Grafana is a data visualization and monitoring tool used to show
data from external sources, like Prometheus.

https://grafana.com/

-

The SLA Manager has been adapted to be used in the context of CLASS. New
functionalities and capabilities have been added to the SLA Manager during the
project period. This application is part of the Cloud Data Analytics Service
Management and Scalability components.

Grafana, Prometheus, and Prometheus Pushgateway are part of the monitoring tools
module used by the SLA Manager to get the applications and infrastructures metrics
needed to evaluate the SLAs and QoS defined by users for their applications. As it was
described in previous deliverables, these tools are, in principle, installed and
integrated in the main Cloud environment (i.e. Data Modena Center). In this
deliverable they will be described separately as they now are also responsible for
gathering metrics from Edge devices.

Finally, Openshift and Kubernetes are the orchestrators used in the cloud
environment, meanwhile MicroK8s is the container orchestrator used in the Edge.
Knative and Kubeless are two serverless framework used to deploy and manage
serverless functions. They are also part of the Edge environment.

9 https://www.cncf.io/

https://www.okd.io/
https://kubernetes.io/
https://knative.dev/
https://kubeless.io/
https://grafana.com/
https://www.cncf.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

17

 Architecture
The final version of the Cloud (and Edge) standalone environment for Data Analytics
Service Management and Scalability is composed by three layers:

− The management and monitoring layer, which includes Rotterdam and the SLA
Manager. This layer is on top of the infrastructures layer (container-
orchestration systems) and on top of the monitoring tools deployed in the
Cloud and Edge.

− At the bottom of the diagram (Figure 2), the architecture presents the Cloud
infrastructure layer, responsible for providing the tools needed by the Cloud
to run containerized analytics applications.

− The Edge infrastructure layer is composed by a set of Edge devices responsible
for providing the tools needed to deploy and run containerized applications
and serverless functions.

Figure 2 – Cloud computing platform in the context of the CLASS architecture

In the context of CLASS, Rotterdam is used by COMPSs & Dataclay system to run data
analytics workflows in the Cloud. This COMPSs module uses the REST API provided by
Rotterdam to launch and manage these workflows. On the other side, Openwhisk10
makes use of the Cloud infrastructure layer to run there the correspondent data
analytics functions.

Management and monitoring layer

This layer is composed by the following tools: Rotterdam, the SLA Manager, and a set
of monitoring tools. These are the tools responsible for the deployment, management,
monitoring and QoS enforcement of the containerized applications running in Cloud

10 Apache OpenWhisk is an open source, distributed Serverless platform that executes functions in
response to events at any scale: https://openwhisk.apache.org/

https://openwhisk.apache.org/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

18

and Edge platforms. Apart from these containerized applications, serverless functions
can also be managed by Rotterdam.

On one side, these tools hide all the complexity of container management systems to
final users, by enabling a simplified deployment and lifecycle management of these
data analytics workflows. The tool responsible for this task is Rotterdam, which is also
the main entry point to this Cloud environment.

On the other side, the tool responsible for managing and checking that QoS
requirements are met during runtime is the SLA Manager. QoS constraints, defined
when launching a Rotterdam task, are used at deployment time to generate SLAs,
which are then evaluated by this tool. If the SLA detects a violation, it sends this
information to Rotterdam so it can execute the required actions, like scaling in or out
the application. To do this evaluation, the SLA Manager relies on other monitoring
tools, like Prometheus or Prometheus Pushgateway11, which are the tools that are
continuously gathering metrics from Cloud and Edge infrastructures and the
applications running on them.

Cloud Infrastructure

The cloud infrastructure layer is composed by the following components:

− The container-orchestration systems.
− And the Hypervisor or devices needed to run these orchestration platforms.

This layer is required by Rotterdam and the other management and monitoring tools
to run and manage containerized applications, and it is based on the following
technologies:

− Docker (container technology)
− OpenShift / Kubernetes (container management)
− VMware (Hypervisor)

The main Cloud infrastructure environment used in the project is located in Modena
Data Center, and it is composed by a cluster of four Virtual Machines, and an Openshift
OKD container orchestrator.

Edge devices

Finally, the Edge devices layer is composed by one or more devices connected to
Rotterdam, and it is based on the following technologies:

− Linux distribution: ubuntu 16.04, 18.04
− Container-orchestration system: MicroK8s
− Serverless framework: Kubeless (and Knative)

11 The Prometheus Pushgateway allows applicatiopns and batch jobs to expose their metrics to
Prometheus: https://github.com/prometheus/pushgateway

https://github.com/prometheus/pushgateway

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

19

3.3.1 Rotterdam

Rotterdam is the CaaS application responsible for deploying, configuring and
managing the tasks running in the Cloud and Edge infrastructures layers. This
application is composed by the following subcomponents:

− CaaS API Gateway
− Deployment Engine
− Adaptation Engine
− Infrastructures Manager

All these subcomponents were introduced in D4.2, except the Infrastructures
Manager, which has been added in this final release. Figure 3 shows the internal
architecture of Rotterdam:

Figure 3 – Rotterdam and internal components

CaaS API Gateway

The CaaS API Gateway exposes a REST API with all the methods needed to deploy and
manage applications, serverless functions and infrastructures in Cloud and Edge
layers. Previous release already provided the methods needed to deploy and manage
Rotterdam tasks in the Cloud infrastructure. Now, these methods have been improved
and extended to include more features and capabilities. Apart from that, new methods
have been added to allow final users the management of Edge infrastructures with
MicroK8s where to deploy applications and serverless functions.

Rotterdam tasks deployment and management requests are redirected to the
Deployment Engine, which oversees these operations. SLA violations are redirected to
the Adaptation Engine, which is the responsible for handling these operations by
deciding the actions that must be taken. And finally, infrastructures management
requests, like the deployment of MicroK8s in a remote Edge device, are redirected to
the Infrastructures Manager module.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

20

Deployment Engine

The Deployment Engine is responsible for deploying and managing applications and
functions. It connects to the containers’ orchestrators located in the Cloud and Edge
layers, and send them the applications deployment and management instructions. The
previous release of this component only supported the management of containerized
applications on one cluster at the same time. This has been improved, and now
Rotterdam is able to distribute and manage applications and serverless functions in
multiple clusters and remote devices at a time.

Adaptation Engine

This subcomponent processes the SLA violations and decides which actions must be
taken according to the QoS defined for the applications that generate these violations.
For example, if one workflow is generating violations because it hasn’t enough
workers to execute all the internal tasks, then the Adaptation Engine will send the
Deployment Engine a request to scale out the number of workers of this workflow.

Infrastructures Manager

This new subcomponent processes the requests related to the creation and
management of infrastructures (orchestrators and Edge devices). On one hand, it is
responsible for creating and managing new connections to existing orchestrators, like
Openshift or Kubernetes clusters, and the connections to Edge devices where to
deploy later a MicroK8s (and Kubeless) instance. On the other hand, this
subcomponent is responsible for installing at runtime MicroK8s and Kubeless
instances in these Edge devices.

3.3.2 SLA Manager & Monitoring tools

The SLA Manager is the module responsible for creating and evaluating the SLAs
associated to the Rotterdam tasks. This module relies on the information provided by
a set of monitoring tools which are continuously monitoring the Cloud and Edge
infrastructures and applications. These applications are composed by the following
subcomponents depicted in Figure 4:

− The REST API exposes all the methods needed to create and manage SLAs,
templates, metrics and connections to monitoring tools.

− The Generator creates SLAs based on the QoS / SLA requirements defined in
the JSON files accepted by the REST API methods.

− The Monitor gets the metrics from the monitoring tools.
− The Evaluator is the module responsible for checking that these metrics

comply with the SLAs guarantees defined by users.
− If there is a violation, the Notifier is the subcomponent responsible for sending

this information to other tools, i.e. Rotterdam.
− The Monitoring tools are responsible for gathering infrastructure and

applications metrics.

The subcomponents updated or implemented during this project’s period are
described hereunder.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

21

Figure 4 – SLA Manager and monitoring tools components

Monitor

The monitor module offers a set of interfaces, which can be implemented to adapt the
SLA Manager to a specific monitoring tool. In the case of CLASS, this component has
been adapted to get a list of metrics from Prometheus. These metrics can be defined
using the SLA Manager REST API.

Notifier

The Notifier is another module that also offers a set of interfaces that have to be
implemented to connect the SLA Manager with external tools. In this case, it has been
adapted to connect this tool with Rotterdam. This way, if the Evaluator detects a
violation, the SLA Manager can send this information to Rotterdam.

Monitoring tools

Finally, the monitoring tools that are being used in this release are the following:

- Prometheus, used to get metrics from infrastructures and applications.
- Prometheus Pushgateway, used by COMPSs Workflows to push their metrics

to Prometheus.
- Grafana, used to visualize the metrics monitored by the platform.

 Deployment Diagrams
The figures in this section show the deployment diagrams of the Cloud standalone
environment for Data Analytics Service Management and Scalability Infrastructure
deployed in Modena Data Center. First, this environment can be deployed in a single
cluster, as shown in Figure 5. This kind of deployment includes the following sub-
components: Rotterdam, the SLA Manager and the Monitoring tools.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

22

Figure 5 – Data Analytics Service Management and Scalability Cloud Infrastructure

The cloud infrastructure deployment relies on a cluster composed by two or more
servers. In the case of the Modena Data Center testbed used during all the project
phases to run the platform and its applications, there are four servers used to install
Openshift, one master and three nodes (as shown in Figure 7). The namespaces (called
“projects” in Openshift) used to logically group the applications running in Openshift
comprehend the four servers. One of these namespaces was used to deploy
Rotterdam, the SLA Manager and the monitoring tools. Applications deployed and
managed by Rotterdam run on different namespaces.

During runtime, Rotterdam users can create new connections to remote containers
orchestrators and devices (Edge devices with MicroK8s). Figure 6 depicts this scenario,
where Rotterdam manages multiple orchestrators:

Figure 6 – Data Analytics Service Management and Scalability Multi Cloud and Edge Infrastructure

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

23

One single Rotterdam instance deployed in a Cloud environment (e.g. Openshift
cluster from Modena Data Center) can manage multiple orchestrators located in Edge
and Cloud.

3.4.1 CLASS Cloud standalone environment in Modena Data Center

Figure 7 shows the deployment used in Modena Data Center, including the
characteristics of the VMs used for the deployment:

Figure 7 – Modena Data Center deployment

In this case, Openshift was used instead of Kubernetes. Rotterdam and all the tools
were installed in the default project (namespace), and the applications managed by
these tools were launched in the class namespace.

 Interfaces Provided
This section describes the REST interfaces provided by the Cloud and Edge
environment components, in particular the Rotterdam and SLA Manager applications.
Interfaces provided by the other tools or platforms such as, for example, Kubernetes
or Prometheus, can be found in their respective web sites and documentations.

3.5.1 Rotterdam

Rotterdam exposes a REST interface to external users and applications to manage the
deployment and lifecycle of containerized applications. This REST API presents many
changes with respect to the one presented in the previous release. New functions for
the management of infrastructures and serverless functions have been added.

Rotterdam Tasks

These are the functions responsible for managing Rotterdam tasks running in the
platform. One of the main changes that present these methods is that properties like
the dock identifier have been moved from the request parameters to the body
parameters.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

24

Method URI Description

GET /tasks/{id} Returns all the information of a Rotterdam Task

DELETE /tasks/{id} Deletes a Rotterdam Task from the system

GET /tasks/{id}/all Gets a Rotterdam Task, including deployment info

GET /tasks Returns all the current Rotterdam tasks (from all
infrastructures / clusters)

POST /tasks Deploys a new Rotterdam Task in the cloud / edge platform.
The user can specify the cluster identifier in the body
parameters

QoS / SLA operations

The methods responsible for creating and managing the QoS templates, used to create
the SLAs associated to Rotterdam tasks, are the following:

Method URI Description

POST /sla/tasks/{id}/guarantee/{guarantee} Process SLA Manager violations.
Method used by the SLA Manager to
receive the violations and
notifications.

GET /qos/definitions/{name} Returns the information of a QoS
template definition

GET /qos/definitions Returns the list of all QoS templates

POST /qos/definitions Creates a new QoS template

The first method is responsible for getting the violations generated by external tools,
i.e. the SLA Manager.

Infrastructures

The following methods are used to create and manage the information needed to
connect to other container orchestrators located in remote clusters or Edge devices.
They also include the methods responsible for deploying MicroK8s in these Edge
devices.

Method URI Description

GET /imec Returns the list of all infrastructures / clusters
connected to Rotterdam

POST /imec Creates a new connection to an infrastructure

GET /imec/{id} Returns the information of an infrastructure

PUT /imec/{id} Updates the information of an infrastructure

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

25

DELETE /imec/{id} Deletes an infrastructure connection

GET /imec/{id}/cluster Returns the orchestrator information running on an
infrastructure

POST /imec/{id}/cluster Deploys a new orchestrator (MicroK8s) in an
infrastructure

DELETE /imec/{id}/cluster Deletes the orchestrator from an infrastructure

Serverless functions

The following methods are used to create and manage serverless functions in Kubeless
(MicroK8s) instances.

Method URI Description

GET /functions/{id} Returns a function

DELETE /functions/{id} Deletes a function

POST /functions/{id} Calls a function

GET /functions Returns a list of all functions managed by Rotterdam

POST /functions Creates a new function

Other operations

Method URI Description

GET / Get the status of the REST API server

GET /config Get the current Rotterdam configuration

GET /version Get the current Rotterdam version

GET /status Get the current Rotterdam status

3.5.2 SLA Manager

The SLA Manager also exposes a REST API to external users and applications to create
and manage SLAs, the templates used to create SLAs, and the metrics that will be
monitored or evaluated.

Agreements

Creation and management of SLAs:

Method URI Description

GET /agreements Returns all agreements

GET /agreements/{id} Gets the basic information of an agreement

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

26

POST /agreements Creates an SLA

PUT /agreements/{id}/start Starts the SLA’s evaluation

PUT /agreements/{id}/stop Stops the SLA’s evaluation

PUT /agreements/{id}/terminate Terminates the SLA’s evaluation

PUT /agreements/{id} Updates an SLA

DELETE /agreements/{id} Deletes an SLA

GET /agreements/{id}/details Gets the details of an agreement

POST /create-agreement Creates an agreement from a template

Templates

Creation and management of SLA templates:

Method URI Description

GET /templates Get the list of templates

GET /templates/{id} Get a template

POST /templates Creates a new template

Metrics

Management of the metrics evaluated by the SLA:

Method URI Description

GET /metrics Get the list of all metrics that are being monitored

POST /metrics/{id} Adds a new metric (to be monitored / gathered from
monitoring tools)

DELETE /metrics/{id} Deletes a metric

Sources

The following methods are responsible for managing the Prometheus sources used by
the SLA Manager:

Method URI Description

GET /sources/prometheus Get the list of all Prometheus instances
connected to the SLA Manager

POST /sources/prometheus Adds a connection to a Prometheus instance

DELETE /sources/prometheus/{id} Deletes a connection to a Prometheus instance

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

27

 Installation and usage guides
Apart from the containers’ orchestrator and the monitoring tools, the Cloud Data
Analytics Service Management and Scalability platform is composed of two main
builds. The first one is Rotterdam, and it includes the CaaS API Gateway, the
Deployment Engine, the Infrastructures Manager and the Adaptation Engine. The
other main build is the SLA Manager, which is one of the baseline tools included in
this project.

This section describes how to install the complete Cloud environment, in particular
the tools developed by ATOS: Rotterdam and the SLA Manager.

 Packages distribution and requirements
Both the SLA Manager and Rotterdam are provided as docker images and their code
is available in GitHub, in the following link: https://github.com/class-euproject. These
applications do not require to be installed in a container orchestrator, or in the same
host / location of the orchestrator. They just need to be able to connect to the
orchestrator managed by them. Thus, the basic requirements for these two
applications are the following:

- Docker (if using docker images)
o https://docs.docker.com/engine/install/

- Golang (if using Github code to compile and generate the executable)
o https://golang.org/doc/install

The requirements for installing the other tools that are part of the cloud platform,
Openshift (or Kubernetes) and the monitoring tools can be found in the following links:

- Openshift (version 3.10)
o https://docs.openshift.com/container-

platform/3.10/install/prerequisites.html
- Kubernetes

o https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/install-kubeadm/

- Prometheus, Prometheus Pushgateway and Grafana
o As these tools are provided as docker images, they can be installed in

the container orchestrator (Openshift or Kubernetes). Thus, in this kind
of environment, they only require the containers orchestrator.

 Installation

4.2.1 Container orchestrator

To install an Openshift cluster, users can use the following guide:
https://docs.openshift.com/container-platform/3.10/install/index.html

This guide is specific for Openshift version 3.10, the one used in the Modena Data
Center cluster during the project. At the time of writing this document there is a newer
version of Openshift: 4.4

https://github.com/class-euproject
https://docs.docker.com/engine/install/
https://golang.org/doc/install
https://docs.openshift.com/container-platform/3.10/install/prerequisites.html
https://docs.openshift.com/container-platform/3.10/install/prerequisites.html
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://docs.openshift.com/container-platform/3.10/install/index.html

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

28

As Openshift requires certain security features, the installation will require more steps
and will be more constrained to certain Linux releases, like Centos or RHEL.

By contrast, the installation of a Kubernetes cluster is less complex. Users can follow
the guides provided by Kubernetes, which include the installation of Kubernetes in
multiple or single hosts (MicroK8s): https://kubernetes.io/docs/setup/

4.2.2 Monitoring tools

To install Prometheus in Openshift or Kubernetes, users can follow the guide available
in the following link:

https://prometheus.io/docs/prometheus/latest/installation/

In the case of the cluster deployed in Modena Data Center, ATOS used the playbooks
(ansible) provided by Openshift:

https://docs.openshift.com/container-
platform/3.10/install_config/cluster_metrics.html#openshift-prometheus-deploy

Prometheus Pushgateway and Grafana can be installed using their docker images:

- Grafana: https://grafana.com/docs/grafana/latest/installation/docker/

docker pull grafana/grafana

docker run -d -p 3000:3000 grafana/grafana

- Prometheus Pushgateway: https://github.com/prometheus/pushgateway

docker pull prom/pushgateway

docker run -d -p 9091:9091 prom/pushgateway

After installing the monitoring tools, they have to be configured. For instance, in the
case of Prometheus, users must update the “prometheus.yml” file (configuration) to
enable the connection between Prometheus and tools like the Pushgateway. The
same way Grafana has to be connected to Prometheus using its setup options.

4.2.3 Rotterdam

Rotterdam is provided as a docker image that can be found in the following link:
https://hub.docker.com/r/atosclass/rotterdam-caas

Rotterdam code is also available in the following GitHub link:
https://github.com/class-euproject/Rotterdam

Last version of Rotterdam (docker image) is: atosclass/rotterdam:latest

There are several ways to install the application:

1. Using Openshift-OKD GUI (version 3.10) to deploy and launch the application:
o In OKD Web interface, as shown in Figure 8, go to a project

(namespace), e.g. _default_ project, and select “Add to project >
Deploy Image”.

https://kubernetes.io/docs/setup/
https://prometheus.io/docs/prometheus/latest/installation/
https://docs.openshift.com/container-platform/3.10/install_config/cluster_metrics.html#openshift-prometheus-deploy
https://docs.openshift.com/container-platform/3.10/install_config/cluster_metrics.html#openshift-prometheus-deploy
https://grafana.com/docs/grafana/latest/installation/docker/
https://github.com/prometheus/pushgateway
https://hub.docker.com/r/atosclass/rotterdam-caas
https://github.com/class-euproject/Rotterdam

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

29

Figure 8 – OKD Web interface – Rotterdam deployment

o Select “Image Name” option: atosclass/rotterdam:latest
o Add the following environment variables:

 OpenshiftOauthToken: the value of this token has to be created
manually after installing Openshift and configuring users and
permissions. This variable is supported only when using
Openshift. In the case of Kubernetes this variable is not needed.

 SLALiteEndPoint: this is the URL of the SLA Manager
 PrometheusPushgatewayEndPoint (optional): if there are

applications that need to use this tool to push metrics to
Prometheus, then the value has to be set

 MaxAllowed (optional): Maximum number of violations
allowed before sending a notification to the Adaptation Engine.
This is a default value used by the platform to decide when to
generate a violation in order to take the required actions.

 MaxReplicas (optional): Default maximum number of replicas
allowed per application. In the case one application needs to be
scaled our, this value is used to limit the number of replicas.

o Deploy the image
o Create a Route to access the REST API (CaaS API Gateway), e.g.

“rotterdam-cass.192.168.1.2.xip.io”.

Figure 9 – OKD Web interface – Rotterdam

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

30

2. Using Docker to start the application:
docker pull atosclass/rotterdam-caas:latest

docker run [OPTIONS] atosclass/rotterdam-caas: latest [COMMAND] [ARG...]

Apart from the environment variables used when deploying Rotterdam
application in Openshift, in the case of Docker, users must define the following
environment variables:

o KubernetesEndPoint: URL of Kubernetes REST API. This variable is
supported only when using Kubernetes.

o OpenshiftEndPoint: URL of Openshift REST API. This variable is
supported only when using Openshift.

o ServerIP: IP address of the orchestrator master node.
3. Using Golang command line

After downloading the repository (GitHub), go to “atos/rotterdam” folder, and
execute the following command:
go run main.go

The environment variables described in steps 1 and 2 have to be set in the
system before launching the application.

4.2.4 SLA Manager

The SLA Manager is also provided as a docker image, and it can be found in the
following link: https://hub.docker.com/r/atosclass/slalite

Last version of the SLA Manager (docker image) is: atosclass/slalite:latest

There are two ways to install the SLA application:

1. Using Openshift-OKD GUI (version 3.10) to deploy and launch the application:
o In OKD Web interface, go to a project (namespace), e.g. _default_

project, and select “Add to project > Deploy Image”.
o Select “Image Name” option: atosclass/slalite:latest
o Add the following environment variables:

 UrlRotterdam: URL of Rotterdam REST API, e.g. “rotterdam-
cass.192.168.1.2.xip.io”. The SLA Manager needs to know
where to send the violations.

 UrlPrometheus: this is the URL of the main Prometheus
instance, the one deployed in the main cloud container
orchestrator (i.e. Openshift). Users can add more connections
to other Prometheus instances during runtime.

 MetricsPrometheus (optional): the list of initial metrics that will
be requested to Prometheus. Users can add more metrics
during runtime.

o Deploy the image
o Create a Route to access the SLA Manager REST API, e.g. “sla-

manager.192.168.1.2.xip.io”.

https://github.com/class-euproject/Rotterdam
https://hub.docker.com/r/atosclass/slalite

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

31

Figure 10 – OKD Web interface – SLA Manager

2. Using Docker to start the application
docker pull atosclass/slalite:latest

docker run [OPTIONS] atosclass/ slalite: latest [COMMAND] [ARG...]

At the end of the installation in OKD, these two applications should appear in the
selected project or namespace (Figure 11):

Figure 11 – OKD Web interface - Rotterdam and SLA Manager running in “default” namespace

 Usage
After installing and configuring all the platform components, final users should have
access to the Rotterdam CaaS Gateway (e.g. http://rotterdam-
cass.192.168.1.2.xip.io). This REST API is also offered as a Swagger12 interface, which
offers a Web interface with access to all methods exposed by Rotterdam and a
description of all the parameters needed to call these methods correctly. Figure 12
and Figure 13 show some of the CaaS Gateway method exposed in the Swagger
interface:

12 https://swagger.io/

http://rotterdam-cass.192.168.1.2.xip.io/
http://rotterdam-cass.192.168.1.2.xip.io/
https://swagger.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

32

Figure 12 – Rotterdam Swagger REST API – Tasks methods

Figure 13 – Rotterdam REST API – Infrastructure and QoS methods

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

33

The SLA Manager also offers a REST API to users and applications. This REST API can
be accessed via Web browser (e.g. GET methods: http://sla-
manager.192.168.1.2.xip.io/):

{
 "agreements": {
 "Method": "GET",
 "Path": "/agreements",
 "Help": "Agreements"
 },
 "providers": {
 "Method": "GET",
 "Path": "/providers",
 "Help": "Providers"
 },
 "templates": {
 "Method": "GET",
 "Path": "/templates",
 "Help": "Templates"
 },
 "metrics": {
 "Method": "GET",
 "Path": "/metrics",
 "Help": "Metrics"
 },
 "sources": {
 "Method": "GET",
 "Path": "/sources",
 "Help": "Sources"
 }
}

Section 3.5, “Interfaces Provided”, describes all the available methods. The following
subsections describe the JSON content of the tasks, QoS templates and all the other
elements (with examples) used in the REST API methods to create and manage
Rotterdam tasks and all the other elements. These JSON files are used in the body
content of some of the “POST” and “PUT” calls exposed by the REST API.

http://sla-manager.192.168.1.2.xip.io/
http://sla-manager.192.168.1.2.xip.io/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

34

4.3.1 Rotterdam tasks

Rotterdam tasks managed by the platform have to be defined in a JSON format. These
are the formats accepted by this tool (definition of a nginx server13 application):

− Long format (deprecated):

{
 "name": "nginx-app",
 "dock": "default",
 "cluster": "microk8s_1",
 "qos": {
 "name": "KubeletTooManyPods",
 "description": "scale down task if cluster pods > 50"
 },
 "replicas": 2,
 "containers": [{
 "name": "nginx",
 "image": "nginx",
 "ports": [{
 "containerPort": 80,
 "hostPort": 80,
 "protocol": "tcp"
 }] ,
 "environment": [{
 "name": "TEST_VALUE",
 "value": "1.2.3"}]]}

This “long” definition requires the following properties:

o Name: name of the application / COMPSs workflow
o Dock: name of the namespace where to deploy the application (e.g.

“class”)
o Cluster: identifier of the cluster / infrastructure / device
o Qos: identifier of the QoS template used to generate the SLA
o Replicas: number of instances. In the case of COMPSs workflows, this

is the number of workers used by the master.
o Containers: this property contains all the information about the

containerized application
 Image: URL of the containerized application (e.g. docker hub

URL of the application)
 Ports: ports used by the application
 Environment: Environment variables

Previous example defines a nginx application that uses port 80 to expose its
services. It will use a QoS template, called “KubeletTooManyPods”, to generate
the SLA.

− Simple format: These JSON files present a simplified version of the previous
JSON format, and they aim to simplify as much as possible the number of

13 https://www.nginx.com/

https://www.nginx.com/

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

35

properties used by COMPSs workflows and similar applications. The following
examples define a “redis” application.

{
 "name": "redis-app",
 "cluster": "microk8s_1",
 "replicas": 4,
 "image": "redis",
 "qos": [{"qosid": "KubeletTooManyPods"}],
 "ports": [6379]
}

{
 "name": "redis-app",
 "cluster": "microk8s_1",
 "replicas": 4,
 "image": "redis",
 "qos": [{"qosid": "deadlines001",
 "metric": "missed_deadlines",
 "comparator": “<",
 "value": 2,
 "action": "scale_out",
 "maxreplicas": 25,
 "minreplicas": 2,
 "scalefactor": 1.5,
 "maxallowed": 2}],
 "ports": [6379]
}

The main difference between these two files is that one uses a QoS template
identifier, and the other one defines directly the QoS. These new formats
presented in this final release require the following properties:

o Name: name of the application
o Cluster: identifier of the orchestrator
o Image: URL of the containerized application
o QoS: identifier / definition of the QoS template
o Replicas: number of instances / workers
o Ports: ports used by the application

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

36

4.3.2 QoS templates

QoS templates (JSON) used by the platform to generate the SLAs and the actions that
will be taken if there is a SLA violation have the following properties:

{
 "type": "app-compss",
 "guaranteeName": "DeadlinesMissed_2",
 "maxAllowed": 0,
 "action": "scale_out",
 "scaleFactor": 1.5,
 "guarantees": [
 {
 "name": "deadlines_missed_1",
 "constraint": "deadlines_missed < 5"},
 {
 "name": "deadlines_missed_2",
 "constraint": "deadlines_missed < 2"}]}

− Type: this field defines if the QoS template is applied to applications or
infrastructure.

− guaranteeName: name of the guarantee
− maxAllowed: number of violations allowed before raising a violation
− action: what action needs to be taken if there is a violation in the SLA, e.g.

scaling in or out the instances of the application.
− scaleFactor: How to scale out or in the application
− guarantees: the guarantees define the conditions that applications must fulfill.

4.3.3 Infrastructures

Infrastructures managed by Rotterdam have also to be defined in a JSON format. This
subsection presents two different files. The first one is the JSON used to create a
connection to a container orchestrator or to an “empty” (no orchestrator installed)
device:

{
 "name": "Name",
 "description": "Infrastructure description",

"type": "microk8s",
 "so": "ubuntu18",
 "defaultDock": "default",

"KubernetesEndPoint": "http://10.0.5.12:8001",
"PrometheusPushgatewayEndPoint": "http://pushgateway.192.168.7.28.xip.io",
"OpenshiftEndPoint": "http://10.0.5.12:8001",
"OpenshiftOauthToken": "eyJhbGciOiJSUzI.. JhbGciO",

 "hostIP": "192.168.1.12",
 "hostPort": 22,
 "user": "user_name",
 "password": "user_password"

The following properties have to be defined:

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

37

− Name, Description: name and description of the infrastructure / cluster /
device

− Type: type of the infrastructure. Following values are accepted: “Kubernetes”,
“Openshift” and “MicroK8s”

− SO: Operating System. This field is needed when deploying a MicroK8s instance
in a remote or Edge device.

− defaultDock: default namespace
− hostIP: IP address
− hostPort: Port used to connect to this infrastructure
− user: username
− password: user password
− OpenshiftOauthToken (optional): token used to connect to Openshift and

manage applications
− OpenshiftEndPoint (optional): REST API endpoint of Openshift
− KubernetesEndPoint (optional): REST API endpoint of Kubernetes
− PrometheusPushgatewayEndPoint (optional): REST API endpoint of

Prometheus Pushgateway

“HostIP”, “HostPort”, “User” and “Password” fields are used for deploying at runtime
a MicroK8s instance in an Edge device.

The following JSON is used for installing MicroK8s in an “empty” device at runtime:

{
 "type": "microK8s",
 "apiPort": 8001
}

− Type: type of the installation: MicroK8s, MicroK8s and Kubeless, MicroK8s and
Knative etc.

− apiPort: REST API port where the MicroK8s instance will be listening.

4.3.4 Serverless functions

Finally, serverless functions managed by Rotterdam are defined also in a JSON format.
This is a first prototype for basic serverless functions:

{
 "name": "helloworld",
 "cluster": "microk8s_cluster",
 "runtime": "python2.7",
 "function": "def foo(event, context):\n return \"hello world\"\n"
}

- Name: name of the function
- Cluster: identifier of the orchestrator (i.e. MicroK8s device)
- Runtime: runtime needed to execute the function
- function: function code

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

38

4.3.5 Usage example: deployment and scalability

This section presents an example of how to use the platform to deploy a
(containerized) nginx server application in the default Cloud environment (i.e.
Openshift – Modena Data Center). This example includes the use and collaboration
between Openshift, Rotterdam, the SLA Manager and Prometheus.

1. The nginx server application will be deployed in the “class” project (namespace) of
Openshift. In this example the “class” project is empty, as is shown in the following
figure:

Figure 14 – OKD GUI – empty “class” project / namespace

2. To deploy this application, we will use Rottedam (CaaS API Gateway) application
deployed in the “default” project (namespace) together with the SLA Manager,
Prometheus, Grafana and the Prometheus Pushgateway.

Figure 15 – OKD GUI – “default” project / namespace with Rotterdam and the SLA Manager

3. First, we have to create a QoS template. The following template will be used to
scale in the application if there are too many pods running in the platform. This
example uses the metric “kubelet_running_pod_count” gathered by Prometheus
to simulate that if the infrastructure is being stressed, then applications like the

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

39

nginx-server should use fewer resources by reducing their number of instances or
replicas.

Figure 16 – Rotterdam (swagger) REST API – QoS template definition

After defining the template, we use the POST method “/qos/definitions”, available
in the swagger REST API, to create this QoS template.

4. Then, after successfully creating the QoS template, we can proceed with the task
(nginx) definition where we can associate it to this QoS template. In the task
definition we can also specify the number of instances (“replicas” property), for
example we can set this value to 55 to force the violations.

Figure 17 – Rotterdam (swagger) REST API - Task definition

5. After launching the POST “/tasks” request we get a response (also in JSON format)
like the one presented in Figure 18. This response includes the identifier of the
Rotterdam task, needed to get later the information and status of this task, and it
also includes, among other properties, the URL where users can access the nginx
server application.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

40

Figure 18 – Rotterdam (swagger) REST API – Task deployment result / response

6. Back in the Openshift-OKD Web interface, we can see that the “class” namespace
/ project now shows the deployment (Figure 19 and Figure 20) of the nginx server
application and all the internal elements, e.g., service, pods, routes.

Figure 19 – OKD GUI – nginx server deployment in “class”namespace

If Openshift needs to download the application image from docker hub, then this
operation can take a few minutes. In the case the docker image is already
downloaded in Openshift, this deployment operation takes less than a minute.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

41

Figure 20 – OKD GUI - nginx server deployed and ready

Once the application is deployed and ready, users can access it through the web
browser (Figure 21). Other type of applications, such as COMPSs workflows or
applications like redis, will be accessed through their published ports. This
information can be obtained by calling the GET “/task/{id}” method.

Figure 21 – nginx server application

7. The SLA generated by the system can be accessed by calling the SLA Manager REST
API, e.g. using the web browser. Next figure shows the SLA generated in this
example. It contains the status (e.g. “started”), the expiration and creation time,
the identifier of the SLA, and the guarantees defined by the user in step 3.
Internally, the SLA Manager is continuously evaluating the SLAs. In this case, the
SLA Manager asks Prometheus every 15s or 30s for the metrics defined in the
guarantees. If it detects that these guarantees are not met, then it generates a
notification or violation and sends it back to Rotterdam’s Adaptation Engine.
In this example, the SLA Manager will detect a violation, and it will send it to the
Adaptation Engine. This Adaptation Engine will take the actions defined in the QoS
template used for this application. In this case, it will halve the number of instances
of the nginx server application (see Figure 23Figure 23).

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

42

Figure 22 – SLA Manager REST API – SLA

8. The Adaptation Engine takes the required actions after detecting a violation with
the nginx server application:

Figure 23 – OKD GUI - nginx server’s instances are halved after SLA violation

4.3.6 Usage example: MicroK8s in Edge device

This section presents an example of how to use the platform to first deploy a MicroK8s
instance in an Edge device, and then how to deploy in this Edge device a
(containerized) nginx server application.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

43

1. First, we need to create the connection to the Edge device. Here we define the
Operating System, the IP address, and the username and password to access this
host.

Figure 24 – Rotterdam (swagger) REST API – Infrastructure creation

2. After creating the location using the POST “/imec” method, we get an identifier in
the JSON response (Figure 25). This identifier will be used to deploy there
MicroK8s.

Figure 25 – Rotterdam (swagger) REST API – Infrastructure creation response

3. From the Swagger REST API we can get the list of infrastructures managed by the
platform (using GET “/imec” method). After creating this new connection, we get
two elements: the default cluster (i.e. the main Openshift cluster deployed in
Modena Data Center), and the new Edge device.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

44

Figure 26 – Rotterdam (swagger) REST API – list of managed infrastructures

4. In order to install MicroK8s in this cluster, we can use the POST “/imec/{id}/cluster”
method, as is shown in the next picture:

Figure 27 – Rotterdam (swagger) REST API – MicroK8s deployment

5. Going back to the Openshift – OKD Web interface, we can access Rotterdam’s logs.
In these logs (see next figure), we can see the information related to the MicroK8s
installation in the selected device. This installation can take a few minutes.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

45

Figure 28 – OKD GUI – Rotterdam logs (MicroK8s deployment)

6. After installing MicroK8s we can start the deployment and management of tasks
in this new orchestrator. In this example, we will deploy again an nginx server
application using the same POST “/tasks” method we used in the previous example
in Section 4.3.5.

Figure 29 – Rotterdam (swagger) REST API – task deployment

This time we have to specify the identifier of the orchestrator (cluster field) in the
task definition.

7. After deploying the Rotterdam task, we get the URL where we can access the nginx
server, as shown in Figure 30.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

46

Figure 30 – Rotterdam (swagger) REST API –response of task deployment

8. Once the application is deployed and ready, users can access it through the web
browser:

Figure 31 – nginx server application running in the Edge device

9. Finally, if we take a look at the Edge device console, we can see MicroK8s installed
and listening at port 8001 (the one we defined in step 4), and also get the elements
that correspond to the nginx server application (pods, services, deployment and
replicaset).

Figure 32 – Edge device console

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

47

 Demonstration
Demonstration of the Cloud (and Edge) Data Analytics Service Management
components final release considers the following video demos:

- The first one shows the integration of the Cloud Data Analytics Service
Management components and COMPSs. We present two videos of this
integration made in M26, where the deployment of multiple workflows in the
Cloud using Rotterdam is shown:

o integrationcompssrotterdamconverted.mp4
o integrationcompssrotterdam_x2_-_part_1.mp4

integrationcompssrotterdam_x2_-_part_2.mp4
- The other demo shows the deployment and management of applications in

multiples Cloud and Edge orchestrators. There is also a video of this second
demo:

o rotterdammultipleorchestratorsconverted.mp4

These demonstrators are available at the CLASS intranet:

https://class-project.eu/user/login

A dedicated user has been created for demonstration purposes, with limited access to
deliverables and related videos. The credentials to access this service are the
following:

Username: EC_user

Password: @Hz.52qXXF#K23

After log in, click on “Intranet”, the demonstration videos and files of this deliverable
are located in “PU_D4-7Demo” directory.

 Scenario description
For these demos we have used the Cloud platform deployed in the Modena Data
Center (described in section CLASS Cloud standalone environment in Modena Data Center),
and an Edge Device with Ubuntu 18 and 4 GB RAM. Figure 33 depicts the elements
used in these demos:

https://class-project.eu/user/login

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

48

Figure 33 – Openshift (Modena Data Center) and Edge device used in the demos

Rotterdam, the SLA Lite and the monitoring tools are deployed in “default” project
(namespace) of the Openshift cluster (Cloud). These monitoring tools are gathering
metrics from the cluster and also the applications. COMPSs master application will
generate custom metrics using the Prometheus Pushgateway. Tasks deployed by
Rotterdam will run in “class” project.

A remote (Edge) device will be connected to Rotterdam, and will be used to deploy
there containerized applications. Tasks deployed by Rotterdam in this device will run
in “default” project.

 Integration with COMPSs
This demo shows the integration of COMPSs and the Cloud Data Analytics Service
Management platform. First, a COMPSs master application was used to launch a set
of workers in the Cloud to run a workflow (see Figure 34). Then, two COMPSs master
applications instead of only one, were used to launch two workflows in the Cloud using
Rotterdam Caas API Gateway. This demo includes the coordination of Rotterdam,
Openshift, the SLA Manager, COMPSs, the COMPSs workers, Prometheus, and the
Prometheus Pushgateway, and it shows the following features:

- Integration of Rotterdam, SLA Manager, Prometheus, Prometheus
Puschgateway and COMPSs.

- Execution of multiple COMPSs workflows in the cloud platform.
- How COMPSs workflows are automatically scaled based on the monitoring of

real time QoS objectives (SLAs) missed deadlines generated by workflow’s
tasks.

- How platform metrics can be viewed on Prometheus and Prometheus
Pushgateway.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

49

Figure 34 – Integration with COMPSs master application

The demonstration steps presented in the following subsection make use of five
different graphical interfaces and one console window:

- OKD-Openshift Web UI of the Cloud platform
- Rotterdam Swagger Web Interface
- SLA Manager interface
- Prometheus and Pushgateway interfaces
- Console window of COMPSs master application

5.2.1 Demo

The recorded demo can be accessed in the following link:

integrationcompssrotterdamconverted.mp4

Step 1: Checking Prometheus metrics (min 00:25) - Prometheus Web Interface

Step 2: Launching COMPSs master application (min 00:35) – COMPSs master
application

https://class-project.eu/system/files/class_video_files/PU_D4-7Demo/integrationcompssrotterdamconverted.mp4

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

50

Step 3: COMPSs workers deployed on Openshift platform (min 00:51) - OKD Web
Interface & COMPSs master application

Step 4: Rotterdam scales out the workers after violations (min 00:58) - OKD Web
Interface & COMPSs master application

Step 5: COMPSs master updated metrics in Prometheus Pushgateway 2 deadlines
missed (min 01:10) - Pushgateway Web Interface & COMPSs master application

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

51

Step 6: Checking SLA (min 01:30) – SLA Manager Web Interface

Step 7: Rotterdam continues scaling out the workers after more violations are
generated (min 01:42) - OKD Web Interface

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

52

Step 8: Checking COMPSs workers ports exposed by Rotterdam. These ports are used
by COMPSs master to execute the workflow tasks (min 02:28) - Rotterdam Swagger
Web Interface

integrationcompssrotterdam_x2_-_part_1.mp4

integrationcompssrotterdam_x2_-_part_2.mp4

Step 1: Launching COMPSs master A application (min 00:33) – COMPSs master
application A

https://class-project.eu/system/files/class_video_files/PU_D4-7Demo/integrationcompssrotterdam_x2_-_part_1.mp4
https://class-project.eu/system/files/class_video_files/PU_D4-7Demo/integrationcompssrotterdam_x2_-_part_2.mp4

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

53

Step 2: Launching COMPSs master B application (min 00:35) – COMPSs master
application B

Step 3: Rotterdam deploys in “class” namespace the workers of the two workflows
(min 00:39) - OKD Web Interface

Step 4: Rotterdam scales up the number of workers of the two workflows after getting
violations from the SLA Manager (min 01:04) - OKD Web Interface

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

54

Step 5: Prometheus shows the metrics that generated the violations (min 02:01) -
Prometheus Web Interface

Step 6: Two SLAs were created. One for each workflow (min 02:29) – SLA Manager
Web Interface

Step 7: Violations are shown in master B application console (min 03:095) – COMPSs
master application B

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

55

 Management of multiple clusters in Edge and Cloud
This demo shows the management of multiple orchestrators and applications from
the main Rotterdam instance deployed in the Cloud Data Analytics Service
Management platform from Modena Data Center. This demo includes the
coordination of Rotterdam, Openshift, MicroK8s, the SLA Manager and Prometheus.

Figure 35 – Management of multiple clusters and applications

The following features are shown in this demo:

- Management of multiple infrastructures: main cluster’s orchestrator and one
Edge device

- Deployment of a MicroK8s orchestrator in an Edge device
- Execution of multiple applications in the Cloud platform and in the Edge device

The demonstration steps presented in the following subsection make use of two
different graphical interfaces and one console window:

- OKD-Openshift Web UI of the Cloud platform
- Rotterdam Swagger Web Interface
- Console window of the Edge device

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

56

5.3.1 Demo
rotterdammultipleorchestratorsconverted.mp4

Step 1: Check existing Rotterdam tasks (min 00:34) - Rotterdam Swagger Web
Interface

Step 2: Check existing infrastructures / orchestrators managed by Rotterdam (min
00:59) - Rotterdam Swagger Web Interface

Step 3: Getting IP address from Edge device (min 01:34) - Edge device console

https://class-project.eu/system/files/class_video_files/PU_D4-7Demo/rotterdammultipleorchestratorsconverted.mp4

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

57

Step 4: Creating a new infrastructure / connection to the Edge device (min 01:49) -
Rotterdam Swagger Web Interface

Step 5: Check existing infrastructures / orchestrators managed by Rotterdam (min
03:23) - Rotterdam Swagger Web Interface

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

58

Step 6: Deploying a MicroK8s instance in the Edge device (min 03:33) - Rotterdam
Swagger Web Interface

Step 7: Checking Rotterdam logs – MicroK8s installation (min 05:24) – OKD Web
Interface

Step 8: Deploying an nginx server application on the Edge device (min 07:15) -
Rotterdam Swagger Web Interface

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

59

Step 9: Checking tasks deployed on the Edge device (min 08:23) - Edge device console

Step 10: Nginx server application from Edge device (min 09:20)

Step 11: Deploying an nginx server application on the main cluster - Openshift (min
10:02) - Rotterdam Swagger Web Interface

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

60

Step 12: Checking tasks deployed on the Openshift device – “class” namespace /
project (min 10:25) - OKD Web Interface

Step 13: Nginx server application from Openshift - “class” namespace (min 10:37)

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

61

 Conclusion
This deliverable reported on the work done in WP4 from M16 to M29, and the
contributions done by ATOS to WP3 during the same period. The target at milestone
MS3 of tasks 4.2 and 4.3 has been successfully achieved and documented in this
deliverable: A cloud and edge environment for data analytics service management and
scalability. The same applies to task 3.2, “Develop, experiment and evaluate edge
platform agent for analytics”.

This deliverable also presented the code, guides and the instructions to install and
manage the complete Cloud and Edge environment platform, including use examples
and two demonstrations (videos), one of them made to the project team in Madrid’s
face to face meeting (February 2020).

The progress done in the last two milestones will pave the way for the next phase
where the goal will be evaluating the Use Cases using the Cloud and Edge platform
environment presented in this deliverable. For this purpose, we will continue the
development and improvement of the platform.

D4.7 Final release of the Cloud Data Analytics Service Management and
Scalability components - Version 1.0

62

References

[1] C. -. DoW, “Edge&CLoud Computation: A Highly Distributed Software Architecture
forBig Data AnalyticS (proposal document)”.

[2] CLASS, “D4.1 Cloud Requirement Specification and Definition,” June 2018.

[3] CLASS, “D4.2. First release of the Cloud Data Analytics Service Management
components,” March 2019.

[4] CLASS, “D4.4. First release of the Cloud Data Analytics Service Scalability
components,” March 2019.

[5] Atos-SLALite, “https://www.mf2c-project.eu/wp-
content/uploads/2017/12/D4.5-mF2C-Platform-Manager-block-and-
microagents-integration-IT-1.pdf (Section 3.3)”.

[6] Atos-mF2C, “mF2C (Towards an Open, Secure, Decentralized and Coordinated
Fog-to-Cloud Management Ecosystem),” [Online]. Available: https://www.mf2c-
project.eu/.

	Table of contents
	Table of Figures
	Terms and Abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Relation to other deliverables and work packages
	1.3 Structure of the document
	1.4 Glossary adopted in this document

	2 Functional Description
	2.1 Transparent lifecycle management of data analytic workloads in multiple Cloud and Edge clusters
	2.2 Creation and management of connections to multiple Cloud and Edge containers orchestrators
	2.3 Deployment and management of applications and serverless functions in Edge devices
	2.4 Real-time QoS guarantees, SLA management and data analytics service scalability
	2.5 Performance monitoring of data analytics workloads and infrastructures

	3 Technical description
	3.1 Major changes in final release
	3.2 Baseline Technologies and dependencies
	3.3 Architecture
	3.3.1 Rotterdam
	3.3.2 SLA Manager & Monitoring tools

	3.4 Deployment Diagrams
	3.4.1 CLASS Cloud standalone environment in Modena Data Center

	3.5 Interfaces Provided
	3.5.1 Rotterdam
	3.5.2 SLA Manager

	4 Installation and usage guides
	4.1 Packages distribution and requirements
	4.2 Installation
	4.2.1 Container orchestrator
	4.2.2 Monitoring tools
	4.2.3 Rotterdam
	4.2.4 SLA Manager

	4.3 Usage
	4.3.1 Rotterdam tasks
	4.3.2 QoS templates
	4.3.3 Infrastructures
	4.3.4 Serverless functions
	4.3.5 Usage example: deployment and scalability
	4.3.6 Usage example: MicroK8s in Edge device

	5 Demonstration
	5.1 Scenario description
	5.2 Integration with COMPSs
	5.2.1 Demo

	5.3 Management of multiple clusters in Edge and Cloud
	5.3.1 Demo

	6 Conclusion
	References

