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1 Executive Summary 
This document describes deliverable D5.4 “Final release of an augmented platform for WP5 
analytics workloads”, which is the final release of the analytics layer of the CLASS software 
stack, in accordance with Task 5.4 of the CLASS DoA [1], deliverables D5.1 [2], D5.3 [3] and 
other related CLASS documentation. It marks another successful delivery of the CLASS project 
as part of milestone MS3, executed in M16-M30. 

This milestone has been subject to constraints that have slowed progress behind expectations, 
have already lead to a 2-month delay, and have been reported separately to the PO. To avoid 
further delay in delivery, we deliver all planned content under some mitigations that are 
expected to complete shortly after the milestone, as following: 

• The EXPRESS prototype delivered is near completion, and is therefore not integrated 
yet with CLASS applications. A small application demonstrating its basic capabilities 
is included, as discussed below. 

• The Warning Area / Collision Detection integration with PyWren is close to 
completion, similar to the already-completed Trajectory Prediction + PyWren 
integration (which is included with demonstration). So, we deliver a stand-alone 
demonstration of the core Collision Detection logic as proof of progress.  

The document lays out as follows: Section 2 consists of overview and feature description of 
this deliverable, in alignment with other deliverables and project goals. Section 3 provides a 
technical specification of each delivered component. Section 4 provides delivery details: per-
component bundling/installation, and demonstration/impact where available. Last, Section 5 
provides a glossary of key technology products involved in CLASS, to assist in overall 
understanding of the document. 

2 Overview 
The analytics layer of the CLASS software stack allows multiple types of big-data analytics 
back-ends, such as map/reduce, task-based, CEP or DNN, to integrate in a uniform mesh 
where workloads and components can interact or be invoked via REST, CLI or in response to 
events. The key to this novel approach is the use of a serverless platform based on Apache 
OpenWhisk [4] as the foundation, as shown in Figure 1 below. 
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Figure 1. CLASS Analytics Layer Architecture. 

In this final release of the analytics layer, in accordance with the high-level design provided in 
D5.1 [2] and initial release in D5.3 [3], the following features are included: 

1. Core platform: EXPRESS – Extended PREdictability ServerlesS. Unlike the initial 
release, EXPRESS has been completely redesigned as a portable solution for 
predictable execution of serverless functions. Being portable, EXPRESS can be 
deployed on top of an existing serverless platform (which is Apache OpenWhisk in 
CLASS), at all components of the compute continuum of CLASS (cloud, street node and 
car node), on top of either Kubernetes [5] or Docker [6]. 

2. Runtime support for COMPSs: same as in D5.3 [3]. We built a container-based 
runtime for running COMPSs [7] or COMPSs-based workloads as OpenWhisk actions. 
This also allows relaying the runtime parameters and the rtp policy into COMPSs. 

3. Set of analytics back-ends: comprising of the following back-ends: 
a. PyWren – serverless Map/Reduce engine: PyWren [8] is a Map/Reduce 

engine on top of serverless execution, originally from UC Berkeley and ported 
to OpenWhisk and extended by our team in IBM Research. In the initial 
release of D5.3 [3], PyWren has been augmented with support for dataClay 
[9] from BSC, which is designated as the shared storage backbone for CLASS. 
In this final release, PyWren has been extensively optimized to reduce its 
computation latency, as explained further below. Also, PyWren has been 
integrated into the CLASS application of Trajectory Prediction, in the context 
of the Obstacle Detection use-case, as discussed in Section 3.3.1.1.  

b. COMPSs: a programming framework (programming model and runtime),  
developed at BSC, that allows to distribute parallel code (written in Java, 
C/C++ or Python programming languages) in a distributed and heterogeneous 
computing environment. A more detailed description of COMPSs and its 
features designed for this project can be found in Deliverable 2.5 [10]. 
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c. pCEP – In this final release, the algorithms for processing events in the context 
of the CLASS applications, such as Trajectory Computation and Collision 
Detection, have been extracted by ATOS from pCEP and converted to run on 
PyWren. However, pCEP is still available as an analytics back-end in its own.  

d. DNN (Edge): a suited and personalized version of YOLOv3, previously 
implemented in C by the darknet framework [11] then retrained and 
enhanced by use of TensorRT [12] exploiting tkDNN, a library developed by 
UNIMORE students. A more complete description of this DNN can be found in 
Deliverable 1.2 [13] 

3 Technical Specification 
This section provides a more detailed description of the specific components that are included 
in this release. Each component’s section should include the technical details of the 
component along with a usage description and example, if such is available and relevant. 

3.1 EXPRESS – EXtended PREdictability ServerlesS 

3.1.1 Technical Description 

3.1.1.1 Motivation for change 

EXPRESS was originally (D5.3 [3]) based on Apache OpenWhisk with some adaptations for 
CLASS. However, since then, IBM has been considering revising its serverless offerings, moving 
away from OpenWhisk in favor of alternatives such as Knative [14], which reduced the value 
of our prototype. In addition, unlike the initial prototype, our team looked for a predictable 
solution that more significantly reduces the overhead of executing serverless function than 
just affecting scheduling. At the same time, the global serverless market is also experiencing 
a rising need for predictable execution, with the leader AWS introducing AWS Lambda 
Provisioned Concurrency [15], which improves predictable execution of its serverless Lambda 
offering, and other commercial offerings such as Iguazzio’s Nuclio [16] real-time serverless is 
gaining traction. 

Thus, our IBM Research team has conducted deeper research into the requirements of 
predictable computation on one hand, and into the general mechanisms underlying serverless 
function execution. A first significant observation is that in a modern commercial cloud 
environment, there are two discrete options for handling an event or a service request. One 
is a classic long-running service, and the other is via short running serverless function that is 
invoked in response to the request / event. Services, being long-running, are typically stateful. 
Specifically, they can prepare for a request and thus handle it with low latency. Serverless 
functions, on the other hand, are stateless and initialized on-demand. Thus, they naturally 
incur both high overhead of runtime initialization (commonly referred to as Cold Start [17]) 
and of application / state initialization, such as opening a database connection (can go up to 
30 seconds [18]). Even after computation, a result cannot be returned before application-level 
cleanup (finalization) which can also be significant – and deferred in long-running services to 
the service shutdown phase. On a separate aspect, services often require additional effort of 
life-cycle and scaling, and are billed at coarse quotas (typical for IaaS implementations). In 
contrary, serverless functions enjoy automatic life-cycle management, auto-scaling, and pay-
per-use. Our research question then became to create a third option, a controllable trade-off 
between services and serverless, which exhibits low-latency response similar to services, but 
is serverless in nature, enjoying automatic life-cycle and scaling, and is expected to cost more 
than net use but less than long-term quotas. The considerations are shown in Figure 2 below. 
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Figure 2: Motivation for EXPRESS - Request Latency 

3.1.1.2 EXPRESS Design 

The result of the above research effort is a completely new incarnation of EXPRESS, as a 
portable framework on top of an existing FaaS / serverless platform. The basic approach in 
EXPRESS is re-modelling the serverless function, from a classic monolithic batch of code that 
is executed with parameters and returns a result, to a 3 sub-function sequence that is 
executed in the same memory space (and thus allows to maintain state), as shown in Figure 
3(a) below.  

 
Figure 3: EXPRESS Design Concepts: (a) Function Model (b) Life-Cycle Comparison 

The first sub-function is init() which encapsulates the initialization code, which is independent 
of the invocation parameters, such as opening a database connection, loading a machine-
learning model for online classification, etc. Thus, init() can be executed when the function is 
pre-loaded, ahead of actual invocations, and its effect is preserved in-memory. Next sub-
function is run(), which is the core computation and generates the result. run() is thus invoked 
when the entire function is invoked, using the invocation parameters. Last is fin() which 
encapsulates the finalization code - cleanup, log generation, closing connections, etc. fin() is 
independent of the main computation, and can thus be executed after an invocation result is 
returned. Furthermore, fin() may be deferred, so that the same memory space can be re-used 
to execute run() for multiple consequent invocations using the same initialized state. Figure 
3(b) above shows the difference between classic serverless function execution, executing as a 
whole, and an EXPRESS function, whose separate sub-functions are executed at different 
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times, as explained above. The result is clear – much of the initialization and finalization 
execution overhead of serverless invocations is mitigated. 

The key enabler for allowing EXPRESS functions to execute in this unique way is the Custom 
Runner (CR). Any serverless function, in order to execute in a container, requires a special 
component called a runner to be included in the container as well. The runner provides both 
an execution runtime matching the function code (e.g., Python, JavaScript, or even specialized, 
such as PyWren). The runner is also remote-controlled by the scheduler of the serverless 
platform, telling it when to start executing a function invocation. The EXPRESS CR is similar to 
the FaaS runner in the sense that it provides a runtime matching the specific EXPRESS function 
structure. However, it is also capable of executing in itself as a classic serverless function, 
which means it can execute on top of a classic runner, as is shown in Figure 3 above. Upon 
execution, the EXPRESS custom runner connects to the EXPRESS custom scheduler (running a 
real-time scheduling algorithm), which tells it when to execute the specific sub-functions. This 
way, EXPRESS can create a pool of pre-initialized functions ahead of invocations, and execute 
only the run() sub-function in response to invocations. CRs are terminated (after executing 
fin()) at the serverless function timeout limit or when the EXPRESS scheduler decides to 
discard them. Each pool is auto-scaled and auto-managed by EXPRESS just like regular 
serverless functions. However, the actual serverless cost of using EXPRESS is determined by 
the duration of execution of a CR, which is clearly longer than the total sub-function execution, 
as shown in Figure 3 above. This is exactly the controlled trade-off of EXPRESS - paying more 
than net usage but less than for an IaaS-based service, to receive a service-level latency. 

Integration with FaaS / serverless platform: as implied in Figure 3 above, EXPRESS functions 
are invoked through regular FaaS invocations, although they are not FaaS functions 
themselves, but are executed inside CRs, which are the actual FaaS functions. This is made 
possible through wrapper functions. Generally, speaking, to invoke an EXPRESS function f(), a 
wrapper function ef() is created. This function has the same signature as f() itself, but its 
implementation is calling the EXPRESS function pool API (see below) to invoke f(). ef() is 
deployed as a regular FaaS function and can thus relay invocations and events to f(). The 
function ef() is natively compiled and has a very small footprint, so it can be quickly scheduled 
by the FaaS platform and pose little overhead in the overall invocation. 
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Figure 4: EXPRESS Architecture on top of FaaS Compared with just FaaS 

Figure 4 above shows the overall architecture of EXPRESS and contrasts it with that of a regular 
FaaS / serverless platform. The top part shows a regular FaaS platform such as Apache 
OpenWhisk. In it, functions can be invoked either directly, in response to events, or from a 
workflow orchestrator. In the bottom part it shows EXPRESS running on top of a FaaS platform. 
Here, wrapper functions allow EXPRESS functions to be invoked just like regular FaaS 
functions, but enjoy custom real-time or demand-predicted scheduling (by the EXPRESS 
controller) and custom execution provided by EXPRESS CRs in the pool. 

 
Figure 5: EXPRESS API 

The API of EXPRESS is structured at 3 levels, with rising level of abstraction as shown in Figure 
5 above. All API is asynchronous/non-blocking, except for result API. At the basic level of 
runner API, it allows to manually start a CR as a serverless function, and then send EXPRESS 
sub-functions to execute in it. At the next level of runner pool API, it allows to create an 
autonomous elastic pool of CRs and interact with each independently. Finally, at the highest 
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level of Function pool API, it allows to create an elastic pool of pre-initialized functions (with 
application function code) and perform direct invocations on that pool, taking advantage of 
predictable execution at its fullest. The API further allows to retrieve results of function 
invocations. 

3.1.1.3 Related Works & Positioning 

A common mitigation for cold start in FaaS platforms is that of warm containers. Generally 
speaking, a warm container is a container that finished executing a function. The container is 
kept alive after the function returns for a certain additional grace period. If another invocation 
for the same function arrives in that period, the container is reused by the FaaS platform to 
respond to the new invocation, without any cold start overhead. In some providers’ platforms, 
such as AWS Lambda [19] or Azure Functions [20] , warm containers also share application 
objects across consequent function executions. Obviously, if the grace period expires, or if 
more concurrent invocations arrive than there are warm containers, the cold start issue 
returns, so warm containers alone is more of an opportunistic solution for predictable 
execution. Some platforms such as Apache OpenWhisk [4] feature pre-warming which creates 
a small number of extra containers without functions, in order to mitigate cold start from the 
first invocation.  

A simple and popular technique of periodical warming [21] leverages warm containers 
proactively by invoking functions periodically to keep a designated number of containers 
warm indefinitely. However, this technique does not easily scale to many concurrent functions 
without respective adjustment of the refresh event processing time in the function code, 
which makes it even harder to scale dynamically. 

In the academic and technical literature, there are plenty of solutions to improving 
predictability of serverless function execution. Nuclio [16] and Archipelago [22] couple real-
time scheduling with explicit support for early initialization of both container and application. 
Cloudburst [23] provides efficient stateful serverless computation. SAND [24] improves 
function execution overheads by collocating functions based on scope – whether they belong 
to the same application or not. AWS Lambda Provisioned Concurrency [15] is a recent feature 
of AWS Lambda that allows early provisioning of a fixed-size pool of function containers and 
application initialization. Combined with AWS Auto-Scaling, the pool size can be dynamically 
adjusted to match load changes and adapt to bursts. Similarly, Knative [14] can be integrated 
with a custom scheduler that may allow for a dynamically-sized cold-start pool. PCPM [25] is 
an effort to improve container provisioning in FaaS platforms by modifying them to use pause 
containers. 

Comparing EXPRESS with the above solutions shows that it is capable of supporting most of 
the key predictable serverless function execution features offered by them: mitigation of 
initialization and finalization, custom scheduling with demand prediction and/or real-time 
scheduling, dynamic pool scaling and even predictable state services (by properly extending 
its custom runners). However, EXPRESS embodies one other uncommon feature – it is 
portable, in the sense that it can be implemented on top of any basic FaaS system and 
maintain a similar development experience for both EXPRESS functions and for regular 
functions. Only two other reviewed solutions can be considered portable, namely warm 
containers and periodical warming, but they lack all other features except initialization 
mitigation. Adding predictable execution in a portable fashion can help a cloud consumer 
better control the cost of adding real-time support, by leveraging the existing FaaS investment 
rather than changing it, and arriving at a solution that is market-competitive in terms of 
features. It can also help a consumer and a provider to mitigate costs of maintaining or 
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switching a FaaS solution with added features, such as predictability, maintained 
independently. 

3.1.1.4 An Intermittent Conclusion of EXPRESS 

EXPRESS holds an enormous potential for innovation, well beyond serverless predictability. 
The powerful combination of custom runtime and custom scheduling is a clear indication of 
its ability to implement additional Non-Function Requirements for serverless platforms, and 
we expect to gain impact both inside IBM, as a strategic building block, and outside, in the 
open-source and academic communities. Also, we are pushing it to future EU project 
proposals. See Section 4.1.1 for details. 

3.1.2 Usage  

The instructions in this section explain how to install the current prototype of EXPRESS and 
launch a demo application of it, as following: 

1. The current prototype of EXPRESS is available as a git repository1. It can be installed 
by simply cloning the git repository in your build machine (Linux) using the command 
below. The root folder of the cloned repository shall be referred to as EXPRESS_ROOT. 

git clone https://github.com/class-euproject/express.git 

2. Install pre-requisites for building the prototype: 
• Golang version >=1.13 
• Python 3, version >= 3.6 

3. As explained above, EXPRESS requires a FaaS / serverless platform to execute on top. 
For the current prototype, an OpenWhisk instance should be available with its 
command-line client (wsk) installed and configured – have a proper .wskprops file in 
the user’s home folder. To install OpenWhisk, follow the instructions at 
https://github.com/apache/openwhisk 

4. The prototype supports API at the basic runner level. There is a sample Python CR that 
can be built by following the instructions in EXPRESS_ROOT/runners/python/README.md . 

5. EXPRESS relies on message queues for fast reliable communication between its 
components. In the current prototype, it uses RabbitMQ. The easiest way to start 
RabbitMQ is using Docker as explained in https://hub.docker.com/_/rabbitmq . Note 
that this requires installing Docker first, so it’s easier to install on the same machine 
where OpenWhisk is installed as well (which requires Docker or K8s+Docker).  

6. Now that RabbitMQ is running, it can be used via the URL: 
amqp://guest:guest@<rabbitmq_host_ip>:5267 .  
Edit EXPRESS_ROOT/test/happy0/happy0.go line 70 and paste this URL with the right 
RabbitMQ host IP address. 

7. Open a terminal at EXPRESS_ROOT/test/happy0 and run  
go mod tidy   
go build  
to build the demo executable of happy0. If the installation process has been 
properly followed, no errors should be generated. 

8. Run the demo in the same folder of the build above: ./happy0. The demo starts a CR 
as a function in the configured OpenWhisk instance, sends an execution request to it, 
gets a result and finally probes for status. 

                                                           
1 Currently, EXPRESS is hosted in a private git repository until the IBM administrative process of open-
source release completes. Access will be granted to reviewers in a per-case basis. 

https://github.com/apache/openwhisk
https://hub.docker.com/_/rabbitmq
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3.2 Runtime support for COMPSs 

This deliverable has been provided in full at MS2 and all relevant details are in D5.3 [3].  

3.3 Optimized PyWren with dataClay Support 

3.3.1 Technical Description 

By the previous milestone MS2 we adapted PyWren (see D5.3 [3]) to use dataClay [9] object 
oriented API and models. dataClay is the CLASS backbone for data propagation across cloud 
and edge. In this milestone of MS3 we focused on two aspects. The first is integrating PyWren 
in designated CLASS applications of Trajectory Prediction (completed - see demonstration 
below) and Collision Detection (near completion – see demonstration of stand-alone code), 
as part of the Obstacle Detection use-case. The second is optimizing PyWren latency to make 
it more suitable for low-latency computation, especially in the context of CLASS use-cases. 

3.3.1.1 CLASS Application Integration 

There are two designated applications involving PyWren in the CLASS use-case: Trajectory 
Prediction (TP) and Collision Detection (CD). TP involves computation of an updated trajectory 
prediction for each object detected in a new snapshot of scanning a given traffic arena covered 
by cameras. CD involves first filtering which objects are included in the Warning Area (WA) of 
each car that requests alerts, and then computing possible collision alerts between the car 
and these objects based on their predicted trajectories. Both applications are described in 
more detail in D1.4 [26].  

Both core applications have been originally developed by ATOS as pCEP applications. Then 
they were converted to Python (to be used with PyWren) and tested using file input. As part 
of the integration effort, a common data input layer called “data managers” has been provided 
by IBM to allow smooth transition from file input to dataClay input. Both delivered 
applications use this layer. This layer essentially provides two different implementations (file-
based and dataClay-based) to a common API of retrieving and storing data that is required by 
each application’s logic. For example, a common API is getVehicleByID(), which retrieves a full 
record of an object in the DKB (the term “vehicle” is a chronological misnomer).   

Trajectory Prediction PyWren integration: involves taking the core logic function of 
traj_pred_v2(v) from the ported Python application. This function takes an object id and 
computes its trajectory prediction based on its updated location history. The PyWren TP 
application is triggered by an event whose payload points to the dataClay alias containing the 
updated snapshot. This snapshot contains the object ids of street objects (cars, pedestrians 
and bicycles). The main PyWren application loads the object ids and then runs a PyWren map() 
operation which processes all objects concurrently using OpenWhisk actions (serverless 
functions). Each action executes the traj_pred_v2(v) function on the respective object. A 
demonstration of the integrated PyWren application is provided and described in Section 
4.2.2.  

Collision Detection PyWren integration: involves filtering objects belonging in the warning 
area of a given car, and then detecting possible collisions between the filtered objects and the 
given car, which yields alert warnings. The core logic function 
collision_detection(main_obj,other_obj) in the ported application checks for a possible 
collision between two street objects from the DKB and generates an alert object if collision is 
detected. The PyWren application is triggered by an event pointing to a given DKB object 
(assumed to be a car). Then PyWren invokes a map() operation that concurrently filters all 



 
D5.4 Final Release Of CLASS Big-Data Analytics Layer    
Version 1.0  

13 

objects in the same arena based on a distance filter to determine if they fall within the car’s 
warning area. Each object that passes the filter is then checked for collision with the car using 
the function collision_detection(main_obj,other_obj). This integration is not completed yet, 
so we provide a stand-alone simulation of running the function 
collision_detection(main_obj,other_obj)  between all objects in a given set, and using the 
data managers. This simulation is provided and described in Section 4.2.3. 

3.3.1.2 PyWren Optimizations 

PyWren, being a means for large-scale batch map-reduce computation, was not originally 
designed for low-latency computation. However, its ability to pool concurrent resources in an 
efficient map/reduce computation is a very good fit for CLASS requirements in the specific 
applications of TP and CD. It also fits the data generation pattern in CLASS, since data is 
generated in snapshots, each applying to multiple objects.  Our objective in MS3, therefore, is 
to tune PyWren, both on its own and in combination with the CLASS applications and with 
dataClay, to reduce the overall end-to-end latency of snapshot computation to a value that is 
usable by the application.  

The PyWren-specific optimizations have been: 

1. Tuning specific time-outs in PyWren of polling for result availability: PyWren is 
typically geared for long computation in its serverless workers. The main client code 
dispatches work to the workers and then polls the object storage for results. We 
increased polling frequency in various code locations to accommodate the much 
shorter worker computation. 

2. Skipping PyWren dynamic runtime installation in workers – by creating custom docker 
images for workers with runtime pre-installed 

3. Moving the distribution of the the PyWren map function (which contains the TP or CD 
logic, respectively) from the dynamic process using object storage to a static process 
using custom docker images 

4. Switching the PyWren workers from spawning a process to do the computation to 
spawning a thread, in the container runtime. This keeps settings in the same memory 
space and allows leveraging warm containers – running multiple consequent 
invocations in the same memory space, which allows skipping initialization. 
Specifically, this helped with accelerating dataClay usage in warm container – since 
the session is already set up, it can be skipped, removing overhead of entire seconds. 

These optimization are combined with a new, more efficient data model in dataClay by BSC 
described D1.4 [26].  

Our current efforts result in the PyWren-TP application reducing from an original ~12 seconds 
computation (for a single object) to ~0.6 seconds – x20 decrease. This value seems quite 
usable, since we deal with the warning area of a car, whose objects are reasonably assumed 
to be 10-50 meters away from a car, which is traveling at the speed limit for urban area of 50 
Km/H. At this speed, the car would take 0.7-3.6 seconds to arrive at an object that is stationary 
or at least not moving in the opposite direction. This covers many possible scenarios including 
those selected for demonstration in D1.4 [26]. 

3.3.2 Usage 

Usage of PyWren with dataClay has already been provided in detail in D5.3 [3]. The same 
description still holds since the changes for MS3 do not affect the external aspect of PyWren. 
See Section 4.2 for installation details of both PyWren and TP and CD integrations. 
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3.4 COMPSs 

COMPSs provides a task-based programming model, as well as map/reduce operations. 
Details of COMPSs as an analytics backend can be found in D5.3 [3] and D2.5 [10]. 

3.5 pCEP (ATOS) 

Details of the pCEP component can be found in deliverables D5.3 [3], D2.1 [27], D5.1 [2], and 
D1.2 [28]. 

3.6 DNN at the Edge 

The Deep Neural Network (DNN) analytics backend has been described in D5.3 [3] and D1.4 
[26]. 

4 Delivery 
This section contains all the specifics of the delivery, including: bundling, installation 
instructions, and related demonstrations and impact, in accordance with the DoA and 
evolution of work. As before, there is a sub-section per component. 

4.1 Bundling and Installation 

4.1.1 EXPRESS – Extended PREdictability ServerlesS 

Installation for EXPRESS and OpenWhisk is explained together with its usage in Section 3.1.2 

4.1.2 Runtime support for COMPSs 

Installation details are available in the respective Delivery Section of D5.3 [3] 

4.1.3 Optimized PyWren with dataClay Support 

The code is available at this new git branch:  https://github.com/class-euproject/pywren-ibm-
cloud/tree/pywren-class 

Clone the above repository and follow the installation instructions at the same link. 

4.1.4 Trajectory Prediction Application 

The code and installation instructions are available at this git repository: 
https://github.com/class-euproject/trajectory-prediction 

4.1.5 Collision Detection Application 

The code and installation instructions are available at this git repository: 
https://github.com/class-euproject/collision-detection 

4.1.6 COMPSs 

Instructions on how to download, install and use COMPSs are available in D2.6 [29]. 

4.1.7 pCEP (ATOS) 

Installation details are available in the respective Delivery Section of D5.3 [3] 

https://github.com/class-euproject/trajectory-prediction
https://github.com/class-euproject/collision-detection
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4.1.8 DNN at the Edge 

Installation details are available in the respective Delivery Section of D1.4 [26] and online at 
https://github.com/class-euproject/class-edge   

4.2 Demonstration and Impact 

The artefacts delivered in MS3 have resulted in a considerable impact. In addition, this report 
includes two bundled demonstrations in the form of on-line videos available at the CLASS 
intranet: 

https://class-project.eu/user/login 

A dedicated user has been created for demonstration purposes, with limited access to 
deliverables and related videos. The credentials to access this service are the following: 

Username: EC_user 

Password: @Hz.52qXXF#K23 

After log in, click on “Intranet”, the demonstration videos and files of this deliverable are 
located in “PU_D5-4Demo” directory  

4.2.1 EXPRESS 

EXPRESS is the key innovation our IBM team builds on for a future serverless platform. The 
impact in its wake includes: 

• IP (patent disclosure) submitted to the IBM patent board, covering the architecture 
and operational concepts of EXPRESS. It has already passed an internal evaluation 
board for novelty and business value, and is now undergoing an extensive prior art 
search by a professional team. 

• Two future EU project proposals – CONGENIAL and UBIQUITY – include EXPRESS as a 
foundation. The proposals are for the future cloud call (ICT-40), are from different 
consortiums (except IBM), and are focusing on predictability and additional non-
functional capabilities delivered via EXPRESS. 

• EXPRESS is promoted in an IBM-internal strategic discussion on the future of cloud 
and serverless 

• EXPRESS has already been briefly presented to an IBM stakeholder of serverless 
offering.  

We have avoided publicizing EXPRESS in papers/blogs until the patent process reaches filing, 
which we hope should happen in the next few months.  

4.2.2 Trajectory Prediction 

We provide a video demonstration of the PyWren-based implementation of the Trajectory 
Prediction (TP) application, which is part of the overall workflow of the Obstacle Detection 
use-case in CLASS. The application operates as explained in Section 3.3.1.1.  

In the video we see first the application action tp-action and the event trigger that is bound to 
it, tp-trigger. Next, we launch a small demo application that polls the default snapshot alias in 
dataClay and prints the trajectory prediction values for all objects. Then, the event is fired 
without parameters, so it points to the default alias. The action is invoked and quickly 
computes TP values for all objects, which are then shown in the demo application output. 

https://github.com/class-euproject/class-edge
https://class-project.eu/user/login
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4.2.3 Collision Detection 

We provide a video demonstration of a stand-alone implementation of the Collision Detection 
(CD) application, which is part of the overall workflow of the Obstacle Detection use-case in 
CLASS. The application operates as explained in Section 3.3.1.1. 

The video shows a demonstration of the CD application using an infinite loop (in our case, 
every 10 seconds) to continuously detect possible collisions and trigger an alert, for now as a 
print. In each iteration, all the objects stored in dataClay, and their predicted trajectories, are 
taken into consideration using an alias and the specific function from the dataClay API. 
Different types of times (global execution, time per collision detection, and more) are analyzed 
to get an initial estimation of the CD component efficiency when working with different 
number of objects and communications with dataClay. The output of this demonstration 
shows the different alerts that should arise to specify the possible collisions between objects 
with the coordinates and the timestamp associated, and the execution times of different parts 
of the application. 

5 Product Glossary 
This auxiliary section provides a brief overview of the products involved in CLASS analytics, to 
put the above discussion in context. 

5.1 Apache OpenWhisk  

Apache OpenWhisk [4] (OW for short) is a serverless, open source cloud platform, which was 
initiated, and is still maintained, by IBM. OpenWhisk executes functions (called actions) in 
response to events, at scale. Both actions and events are high-level abstractions that can be 
implemented in various ways. Actions, as code, can be written in virtually any programming 
language (although there are 7+ languages that have official support), and using many 
platforms and SDKs. Similarly, events can represent any concrete event or signal, such as 
message arrival, command invocation, device signals, or mark the occurrence of a higher logic 
result, such as complex events or other decision logic. Once defined, events can be bound to 
actions using rules to create event-driven applications, with simple facilities for relaying event 
data to invoked actions. Such applications are cloud-native, in the sense that events can arrive 
and be processed by actions anywhere in the cloud, and actions are elastically auto-scaled to 
match the event load.  

The resulting programming model of OpenWhisk offers several attractive advantages to 
developers, in addition to polyglot programming and auto-scaling. Developers do not need to 
manage the location of their code (hence the term “serverless”), its life-cycle or its resource 
allocation – OpenWhisk uses a default (but customizable) resource allocation for each action. 
Actions are time-limited to keep consistent with the original serverless model from AWS, but 
time-limit is configurable. 

The architecture of OpenWhisk consists of the components shown in Figure 6. 
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Figure 6: OpenWhisk Architecture. 

The components of the OW architecture are introduced as follows: 

• NGINX is an optional reverse proxy, used for load-balancing controllers and for SSL 
termination.  

• CouchDB is a database used for storing the assets created by users – actions, triggers, 
rules, packages and records of action activations. 

• Controller is a management logic of OW. It implements the OW REST API, and dispatches 
actions for execution at invokers in response to events. 

• Kafka is a message bus used to distribute messages from controllers to invokers in a cloud 
setting. 

• Invoker is a “worker” of OW. It executes actions using IaaS or cluster facilities. By default, 
an invoker uses Docker containers for running actions, but there are variations that use 
Kubernetes and other facilities.  

OW has a simple interface consisting of a REST API and a CLI (wsk command) which wraps the 
REST API. It allows creating actions and invoking them, creating event triggers from event 
feeds of actual events, binding event triggers to actions via rules, and several secondary 
operations. OW programming model is documented in detail in [30].  

5.2 PyWren 

PyWren [31] is a system that was built at UC Berkeley’s RISELAB to enable highly scalable 
execution of existing Python functions on the cloud using the serverless platform. It started 
on AWS Lambda, the serverless platform of AWS Cloud, and later it was converted [8] to use 
IBM’s Cloud Functions, based on Apache OpenWhisk.   

PyWren’s programming interface is based on Map/Reduce. The developer writes a client 
program that during runtime, creates an executor, which issues highly parallel computations 
as map and reduce operations in its API. These operations are executed using a set of concurrent 
serverless functions/actions. Each action’s environment is prepared to include the 
dependencies needed to execute the map or reduce function, including dependencies of the 
function code and of PyWren itself. The functions used in map and reduce, as well as the input 
and output datasets, are shared between the client and the actions via object storage. 

The current basic API for map and reduce in PyWren is as following [8]: 
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• executor.map(func, dataset) 

• executor.map_reduce(map_func, dataset, reduce_func) 

Both operations perform map first, which applies func (map_func in reduce) to all elements of 
the dataset. For reduce, it later applies a reduce function to the dataset resulting from map. 
The reduce function has an internal accumulator carrying results from one computation to the 
next, ending with a single final result. Figure 7 demonstrates the operation of a map 
computation in PyWren, involving the client, IBM Cloud Functions (OpenWhisk) and object 
storage, in an IBM Cloud setup. 

 
Figure 7: Execution of a PyWren map operation. 

5.3 COMPSs 

Deliverable D2.1 [27] provides a detailed description of COMPSs. 
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