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1 Executive Summary 
This document describes deliverable D5.5 “Evaluation of CLASS big data analytics layer”, which 
focuses on evaluating CLASS analytics, both qualitatively and quantitatively, as required by 
CLASS DoA [1]. The qualitative evaluation is w.r.t. CLASS requirements and features presented 
and refined in deliverables D5.1 [2], D5.3 [3], D5.4 [4], and other related CLASS 
documentation. The quantitative evaluation of CLASS analytics presented in this report is 
based on CLASS use-case workloads, with the full end-to-end evaluation of the CLASS use-case 
discussed in deliverable D1.6 [5]. Also, this document reports further optimizations and 
improvements that have been realized as part of the optimizations and additional impact. 
Together with the rest of MS4 documents, this document concludes the CLASS project as part 
of milestone MS4, executed in M31-M42. 

Similar to MS3, this milestone has been subject to constraints that have slowed progress 
behind expectations. We deliver all planned content under some mitigations, as following: 

• The EXPRESS prototype is delivered stand-alone, not yet integrated into CLASS 
applications – see D2.7 [6]. The original estimation of its effort was inadequate, and 
much additional work was required. Much of this has since happened, but not enough 
to allow integration. To accommodate and demonstrate value within CLASS project 
time-frame, we ported several EXPRESS principles directly into Lithops [7] (formerly 
PyWren), resulting in significant performance improvements and discussed below.  
The eventual integration of EXPRESS is still planned for additional value, but may 
happen outside the project time-frame. 

The document lays out as follows. Section 2 details technical improvements and optimizations 
introduced in CLASS components as part of the ongoing integration and evaluation. Section 3 
consists of evaluation of CLASS analytics at the end of the project. First, qualitatively, in 
contrast with CLASS requirements and design, and then quantitatively, based on experimental 
evaluation. Next, Section 4 provides additional impact details. Last, Section 5 provides a 
glossary of key technology products involved in CLASS, to assist in overall understanding of 
the document. 

2 Code Updates  
The analytics layer of the CLASS software stack has been finalized at MS3, in accordance with 
the project plan and as reported in D5.4 [4]. Since then, during integration and evaluation, the 
WP5 work diverged into multiple work streams. One was (as expected) continuous 
integration. Among the others were evaluations and refinements of analytics back-ends and 
continued work on EXPRESS. For specific backends, such as COMPSs, DNN in the edge (YOLO) 
and DNN in the cloud (SLA predictor), the specific evaluations are delegated to the respective 
evaluation reports of WP2, WP3 and WP4. In this report we therefore report only further 
changes made to Lithops and to EXPRESS. 

2.1 Lithops  

As can be seen in Figure 1 below, Lithops plays an important role in the main CLASS use-case 
application of collision detection. In particular, it is responsible for executing the Trajectory 
Prediction (TP) and Collision Detection (CD) application components. As such, Lithops has 
been a focus of attention with several optimizations. 
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Figure 1 : CLASS application for Collision Avoidance Use-Case 

2.1.1 A Practical Timing Goal 

As discussed in several earlier documents (e.g., D1.4 [8]), the CLASS collision avoidance 
application aims to handle objects that are in the “Warning Area” of a moving car, i.e., objects 
that are outside the immediate field of view of the mounted sensors or the driver’s senses.  
Assuming that the warning area objects are at least 20-50 meters away from a car moving at 
an urban speed limit of 50 Km/h,  on a dry road and no slope (matching the Modena testing 
conditions), we use a Stopping Distance Calculator such as [9] to derive that the response time 
of the entire system should be 0.5-2.5 seconds. Based on that, we define the practical range 
of computation time for CLASS prototypes for TP and CD to be no more than 0.5 seconds. 

2.1.2 Lithops Operation 

Figure 2 below demonstrates how Lithops operates. Lithops is a portable map/reduce engine 
implemented as a Python library, that is designed for massively-parallel computation. It 
provides two operations of map(f, ds) and reduce(f, ds) , of which map() is the more important 
one, as it allows concurrent application of the given function f to all elements of the given 
dataset ds, allowing efficient use of parallel infrastructure for a large amount of independent 
computations. map() is used for TP and CD, as described in detail in D5.4 [4].   
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Figure 2: Lithops Map Operation 

 map(f, ds) works in the original Lithops in the following way: As shown in Figure 2, a Lithops 
computation begins with a client (using the Lithops library) that invokes the map() operation 
executed by workers (that implement the concurrent computation). The process is as follows: 

1. Lithops registers its worker at the target platform that is used to execute the 
computation. For example, on a serverless platform (such as Apache OpenWhisk) it 
registers the worker as a function, based either on an existing Docker image (e.g., 
from DockerHub) or using a customized Docker image. 

2. The function f and dataset ds are each serialized and stored as a single object in object 
storage, which is required for Lithops operation.  

3. Lithops partitions the dataset ds into its elements and builds an invocation for each 
element. The invocation data contains a reference to the serialized function and data 
and a specific index range for the specific element’s data 

4. All invocations are concurrently and asynchronously dispatched from the client, 
causing workers to be instantiated and started at the target platform. The number of 
concurrent workers is limited by the target platform, so there might be several rounds 
of workers being started to cover all elements. In Figure 2, the example maximum 
concurrency is 4. 

5. The client proceeds to wait for result notifications by polling worker-specific objects 
in object storage. 

6. Each worker, once started, uses the invocation data to de-serialize the function f and 
its designated data element e from object storage.  

7. After de-serialization, each worker invokes f(e), writes the result to its designated 
object in object storage, updates some finalization statistics and terminates. 

8. At the client, Lithops collects results from all the workers’ respective objects and 
returns them as the map() result. 

2.1.3 Optimizing Lithops 

Early benchmarks showed that the original version of Lithops exhibits high overhead of 
initialization and finalization, often in the order of multiple seconds. A detailed analysis of the 
code and execution revealed operation flow details that have been summarized in the 
previous Section. Discussions about Lithops applicability in many other big-data use-cases in 
IBM Research and in EU projects (e.g., CloudButton [10]) concluded that for general-purpose 
batch computation, this kind of performance overhead is actually acceptable: 
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• The overhead time in many cases is dominated by net computation time when using 
long-running map functions, e.g., in the order of minutes 

• Data is often too large to be passed directly to workers, e.g., due to serverless 
protocol limitations, so mediating data using a 3rd-party storage such as object 
storage is required. 

However, this is clearly not the case for CLASS applications such as the collision detection 
application (i.e., TP or CD computations), where big data typically consists of a large number 
of small elements, per-element computation is short (order of tens of milliseconds) and total 
computation latency is of extreme importance. 

With those differences established, we set out to optimize Lithops for CLASS.  The first round 
of optimizations for Lithops, which has already been reported in D5.4 [4], consisted mostly of 
tuning and configuration without almost any code changes, and resulted in single object 
computation (TP) still being above our goal of 0.5 seconds, even with the combined 
improvements in DataClay, which is an integral part of the computation – in TP, the Lithops 
code reads and writes to DataClay, and in CD, it reads from DataClay. 

In the second round of optimizations, presented in this report, we focused on optimizing the 
code of Lithops. We profiled the map() operation in detail and confirmed our anticipation that 
a bulk of the overhead time was spent in the cumbersome interaction between the client and 
the workers using object storage. Not only that, we identified that our on-premise deployment 
of Lithops in Modena, which is using Minio [11] as a local object storage solution, suffers from 
increased per-object access time when increasing access concurrency, thus significantly 
damaging our Lithops solution value as a scalable timely computation. Thus, we decided to 
make all necessary code changes to completely remove any dependency of Lithops on object 
storage. The resulting code changes highlights have been as following: 

1. Invocation data is now passed directly to workers using the serverless protocol (or 
that of any other target platform) 

2. Results from workers are notified back to the client using a fast message queue 
(RabbitMQ [12]) instead of polling object storage 

3. A new storage backend was added to Lithops: “storageless”, which is a dummy 
implementation of the Lithops storage interface that throws an exception if asked to 
perform a meaningful operation such as read or write. This helped us verify that 
Lithops does not require storage operations anymore. 

Additionally, we implemented chunking, which allows sending groups of elements (more than 
one) in each worker invocation. This feature serves two purposes. First, it provides a way for 
developers to calibrate their Lithops computation by controlling the resulting concurrency to 
meet a latency requirement (above a certain minimum). Second, it allows to mitigate some 
performance issues discovered during quantitative evaluation and discussed in Section 3.2. 
This feature, along with direct communication and message-queue based notifications, are 
also inspired by similar EXPRESS features. EXPRESS features efficient communication with its 
workers – the runners, and reusing the runners for multiple executions for amortizing the cost 
of worker startup and shutdown. 

3 Evaluation 
In this Section we review and evaluate the fit-for-purpose of the CLASS analytics layer. We 
begin with a qualitative evaluation w.r.t. CLASS requirements and consequent design and 
evolution as presented in D5.1 [2], D5.3 [3] and D5.4 [4].  In the second sub-section, we 
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present a quantitative performance evaluation focusing on latency and discuss several related 
observations that have been collected during evaluation. 

3.1 Qualitative Evaluation 

To assess the final implementation of the CLASS analytics layer from a quality perspective, we 
list the main features and discuss how they are addressed. 

3.1.1 Inclusive, Event-Driven Programming Model Featuring Multiple Analytics API 

As shown in Figure 3 below, the analytics layer of CLASS is based on a serverless platform, 
using Apache OpenWhisk [13]. This allows CLASS developers to compose their applications 
from serverless functions – pieces of business logic that can be written in different 
programming languages and employ different libraries and analytics engines, yet be able to 
invoke one another through the common serverless platform’s protocol, thereby forming the 
complete application. This universal connectivity of the serverless protocol is clearly 
demonstrated in the main CLASS use-case of collision avoidance application, where the 
COMPSs workflow invokes the Lithops-based TP and CD logic, which are available as serverless 
functions. Invocation can be either synchronous (i.e., wait until completion) or asynchronous 
(invoke and continue). 

 
Figure 3: CLASS Analytics Architecture 

The same OpenWhisk protocol also allows to bind serverless functions to events, which are 
similar to pub-sub channels. This allows functions to be invoked based on real-world events 
converted to OpenWhisk events through OpenWhisk feeds. Functions can also distribute 
notifications to other functions using events and cause independent activation of multiple 
other logic components in response to these notifications.  
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Another alternative model that is enabled by combining a data back-bone with events is an 
“enrichment” model in which a function activation is triggered by a timer event, and the 
function, when triggered, retrieves data from the data back-bone, performs its update and 
writes the updated data back. An important advantage of the enrichment model is that it 
allows different stages of the same workflow to operate at different frequencies according to 
their capabilities, while guaranteeing eventual generation of results by having the data 
propagated through the different stages using the back-bone.  

The integration of EXPRESS on top of OpenWhisk does not lose any properties of the 
underlying serverless platform. Functions running inside EXPRESS pools are still reachable 
through the serverless protocol using EXPRESS wrappers, which are deployed as standard (but 
tiny and efficient) OpenWhisk functions. Similarly, events trigger wrappers which relay the 
data to EXPRESS functions asynchronously, thereby generating little additional overhead. 
Also, EXPRESS functions can be written in different languages and use different engines by 
using matching EXPRESS runners. Last, even the EXPRESS API itself is largely language-
independent since it is based on a message queue (RabbitMQ [12]) which has polyglot API and 
on Protocol Buffers [14] which are polyglot as well. Thus, EXPRESS can be directly invoked 
from practically all common programming languages. 

Support for various analytics APIs is enabled in OpenWhisk (with or without EXPRESS) using 
the standard process of building and deploying OpenWhisk functions as described I D5.1 [2]. 
Explicit support has been added for COMPSs workflows on OpenWhisk in D5.3 [3]. Lithops-
specific actions have also been built, and integrated into the demonstration use-case for 
Trajectory Prediction and Collision Detection, as explained in detail in D5.4 [4]. 

3.1.2 Predictable Computation 

One major CLASS goal is predictable computation – executing computation in bounded time 
with high probability. Given that CLASS does not deal with factors below the middleware, such 
as operating system scheduling and hardware control, it aims only for “soft” or “near” real-
time computation. 

Enablement of predictable computation in CLASS analytics layer is focused on three aspects. 
The first is tuning the relevant analytics infrastructure component to generate a bounded 1 
overhead, as shown in the quantitative analysis below. The second aspect is allowing 
scheduling to be customized in favor of real-time execution. The third aspect is giving 
developers a way to calibrate their computation, by providing different options for executing 
the same workload yielding different completion times.  

The above aspects are apparent in many components of the final CLASS analytics layer, 
starting with the core. For the underlying Apache OpenWhisk, CLASS leverages warm 
containers where functions are first pre-loaded in memory using a “warm-up” round before 
engaging in production computation, to make sure function startup overhead, which could be 
quite significant, is outside the critical invocation path. Furthermore, DataClay session start, 
which is a CLASS-specific overhead, is included in the function startup and skipped when using 
warm start, as demonstrated by the TP and CD functions in the collision avoidance application.  

Unfortunately, OpenWhisk has its own fixed scheduling algorithm, and calibration is mainly 
handled by OpenWhisk configuration tweaking, which is a cumbersome process. Given the 
declining business interest in pursuing OpenWhisk-specific optimizations, as reported in D5.4 
                                                             
1 Without complete control of the entire software stack, it is not reasonable to guarantee absolute 
bounds on computation overhead. Therefore, we aim to show “bounded with high probability” as 
discussed in the quantitative evaluation below. 
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[4], we initiated EXPRESS around mid-project, which is a significant leap beyond OpenWhisk 
limitations, and is completely independent of OpenWhisk itself.  

EXPRESS, which we presented in detail in D5.4 [4], supports predictable execution at the 
serverless level much more extensively than OpenWhisk. Recall that the method of operation 
of EXPRESS is “nested computation” - it deploys its own custom runners (CRs) as serverless 
functions and then executes functions inside the CRs according to its own custom scheduler. 
By decoupling the serverless function life-cycle from the executed function’s life-cycle it allows 
for a customary model which separates initialization and finalization from the critical 
invocation path. EXPRESS support for custom scheduling allows explicit integration of a real-
time scheduling algorithm. Last, calibration in EXPRESS is enabled by dynamic control of the 
size of its runner pools. This means the application developer gets to control both the static 
limits of the concurrency – minimum and maximum number of concurrent execution slots in 
the runner pool, as well as the policy by which the pool is dynamically resized in response to 
event load. As explained in D5.4, each EXPRESS slot is used for repeatedly executing requests 
(without initialization and finalization) directed to it from the EXPRESS controller through a 
fast message queue-based protocol. As can be understood, this is what inspired the 
“chunking” feature of Lithops. However, Lithops chunking is only a crude approximation, since 
a chunk size is fixed, whereas EXPRESS control is fine-grained and dynamic, allowing features 
such as load-balancing and deadline awareness. 

Aside from the infrastructure components, predictable computation is also implemented in 
analytics backends. COMPSs has a designated deadline-aware scheduler for workflows that is 
separately discussed in D2.7 [6]. In Lithops, computation overhead was intensively optimized 
and reduced, as discussed in Section 2.1.3 above and evaluated below. Also, calibration is now 
available in Lithops via chunk size control, with the resulting maximum concurrency equals 
the dataset size divided by chunk size. Custom scheduling is not required in Lithops since it 
has a fixed simple fan-out workflow with all elements of equal priority.  

3.1.3 Cloud and Edge Operation 

CLASS aims to allow developers to deploy applications easily and efficiently anywhere across 
the compute continuum – both on cloud and on edge nodes. For edge nodes / clusters, which 
are separate and less reliably accessible than cloud, CLASS analytics features a federation 
mechanism that allows eventually consistent propagation of software assets deployed at the 
cloud to designated edge nodes, operating as programmable analytics agents of CLASS. 
Federation has been implemented and reported in D3.2 [15] and in D3.3 [16]. Furthermore, 
federation has been put to use in the CLASS use-case as a means to update the edge code for 
detector/aggregator in CLASS nodes, proving its value as a simplified means of controlling 
edge nodes at scale, and reported in D3.4. 

3.1.4 Data Backend Connectivity 

As originally discussed in D5.1 [2], universal computation across the compute continuum 
requires both compute and data. For universal data access across the continuum, as described 
in in D2.7 [6],  CLASS relies on dataClay. Support for dataClay for analytics applications is 
demonstrated both in COMPSs (reported separately in in D2.7 [6]) and in Lithops. For Lithops 
applications, this has been implemented and reported starting in D5.3 [3]. Specifically, we 
implemented a “data managers” layer that has both a dataClay back-end and a simple CSV file 
back-end, to allow porting the original TP and CD logic, which was contributed by ATOS as a 
sequential application that used CSV input, into a Lithops-based serverless function that uses 
dataClay. 
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3.2 Quantitative Evaluation 

In this section we report and discuss empirical performance evaluation results conducted for 
the CLASS analytics infrastructure and analytics backends. Following the general approach of 
this document, we focus on OpenWhisk and on Lithops, as other components are being 
separately evaluated and reported in respective MS4 documents. 

3.2.1 Evaluation Method 

Our evaluation method is designed to be closely aligned with the main CLASS collision 
avoidance use-case, as following. We use the CLASS deployment in Modena, with OpenWhisk 
deployed in a Kubernetes cluster in the Modena data center. We use the actual TP and CD 
serverless functions that are used in the collision avoidance use-case as our benchmark 
applications. The datasets used for computation are also generated from actual Modena input 
videos recorded during integration sessions. 

Our Kubernetes cluster in Modena consists of 1 master node and 4 workers nodes 
(provisioned as virtual machines), all deployed with Kubernetes v1.19.3. 3 worker nodes have 
8GB memory each and 4 cores of Intel Xeon Gold 5120 operating at 2.2GHz. 1 worker node 
has 60GB of memory and 16 cores of the same mode. So, in total there are 28 cores.  

We use official OpenWhisk version tag “ed3f76e” (released 11/20) pulled from Docker Hub. 
We use a standard deployment scheme of one OpenWhisk invoker and one OpenWhisk 
controller per node, one global nginx for load-balancing across controllers and one global 
Kafka for controller-invoker communication. Note that available memory for OpenWhisk is 
restricted to 7GB per node due to a recent feature that sets a uniform limit on memory per 
invoker, so we use the common size of usable memory. The translates to a global limitation of 
about 100 concurrent functions for the entire cluster. 

We instrumented the TP and CD functions, both at the client and at the worker components,  
with code that recorded time-stamps of different stages, and used that information to 
generate detailed profiling information from each invocation. 

Last, the benchmarks consisted of running TP and CD at different workload size and chunk size 
and collecting profiling information. Recall that a chunk size controls how many concurrent 
invocations are generated by Lithops and it is designated as the key factor in calibrating 
Lithops performance (aside from the infrastructure size itself). TP (Trajectory Prediction) is a 
unary operation performed at each object individually, so workload size for TP is essentially 
the number for objects in the set. CD (Collision Detection) is a binary operation, taking two 
objects as input, with at least one of which being a connected car. For isolated performance 
evaluation and stress generation, all objects are labeled as connected cars. Thus, workload 
size is determined by number of pairs - all 2-combinations (i.e., unordered unique pairs) of 
objects from a given object set. Each workload is executed 10 times as warm containers (i.e., 
after a warm-up round) and profiling data is collected and analyzed, as discussed further 
below. 

To demonstrate the improvements introduced during project life-time and documented in 
D5.4 and in Section 2.1.3, we compare two versions of Lithops. One is baseline, in which the 
improvements are turned off (by configuration). The other is current, which employs all 
improvements. The version of dataClay that is used with both current and baseline is the latest 
that was available during the benchmarks. This makes the comparison more accurate and 
focused only on Lithops and OpenWhisk, as opposed to previous performance enhancement 
indications in D5.4 [4] that were based on comparing together OpenWhisk + Lithops + dataClay 
using a few point values.  
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3.2.2 Evaluation Results 

Evaluation results are presented as following. We start with overall end-to-end computation 
latency for TP and for CD, comparing baseline and current. We then discuss some insights and 
observations arising from the collected data. Finally, we present and discuss OpenWhisk 
invocation overhead and its significance in practical use of serverless infrastructure for 
latency-sensitive computation. 

3.2.2.1 Total End-To-End Latency 

Figure 4 below presents the total end-to-end latency results for both baseline and current CD 
functions. The measurements are taken for chunk size of 1, 3, 5 and 10 objects, for workload 
sizes of 5, 10, 20 and 50 objects. Both graphs (baseline and current) are shown on the same X 
and Y axis. 

A few observations: 

1. The current Lithops improves in total latency up to 7X over baseline, e.g., when 
comparing the 20 objects workload latency 

2. The current Lithops delivers CD of 50 objects (>1200 object pairs) in ~500 msec, which 
is the upper practical limit, as described in Section 2.1.1. Baseline CD for 50 objects is 
too slow for any practical reasons (tens of seconds) so it is not included. 

3. A typical and expected graph shape of “smiling curve” is formed for all workload sizes. 
This demonstrates two conflicting apparent behaviors: 

a. Too-high chunk sizes imply reduced concurrency, where the existing 
infrastructure is under-utilized and few Lithops workers have to process lots 
of object pairs sequentially, yielding high total latency.  

b. Too-low chunk sizes for large workloads yield a number of invocations that is 
higher than the number of maximum concurrent workers allowed by 
OpenWhisk, thus causing workers to be re-invoked with new sets of pairs but 
with additional overhead of worker reset (finalize and restart). For small 
workloads, too-small chunks cause straggler sensitivity – i.e., that workload is 
thinly spread over many workers, and that late-starting workers (stragglers) 
delay total completion time, yielding again increased total latency. 

Figure 4: Average end-to-end latency of Collision Detection 
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4. Calibration is indeed valuable, as the shortest total latency for a given workload size 
is attained at different chunk sizes – sometimes 1, sometimes 3, sometimes 5. A future 
logic (e.g., DNN) can help in automatically determining the right configuration. 

Figure 5 below presents total end-to-end latency for TP, baseline and current. In a TP 
computation, processing is done per-object, as opposed to per-object-pair in CD. Because of 
that, the same size of object set yields a much smaller workload, compared to the square-size 
workload of CD. Thus, we benchmark TP with bigger object set sizes to examine its behavior 
realistically compared to CD. As expected, the results exhibit behavior similar to CD with 
similar observations. Note that the improvement demonstrated through project optimizations 
in TP is as much as 3X, demonstrated for 50 object workload. Another minor observation that 
is more apparent with TP is that small workloads with large chunk size yield similar latencies, 
because all computation is handled essentially in a single Lithops worker (a trivial case). 

 
Figure 5: Average end-to-end latency of Trajectory Prediction 

  

3.2.2.2 OpenWhisk Overhead 

In this Section we evaluate the invocation overhead imposed by OpenWhisk. Figure 6 below 
presents the overhead measured for TP and CD invocations. As we are dealing with platform 
overhead, we consider results collected from both baseline and current versions of both 
applications.  

Each of the 4 graphs in Figure 6 presents the 90th percentile of OpenWhisk invocation 
overhead, for TP and CD, baseline and current. The calculation of per-invocation overhead is 
done by subtracting the net execution time of the respective TP or CD application from the 
total (gross) execution time, which was presented and discussed in the previous Section.  

The most important observation from this data, which can be easily seen, is the critical 
importance of warm start. Note that the difference between measurements is in order of 10s 
of msec for all chunk sizes and workload types, except for a few outliers that stand out, e.g., 
CD baseline, chunk size 10 and workload of 20 objects. Analyzing the logs, we traced those 
outliers to two cases of cold start: 
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• Lithops worker cold start – this can happen e.g., when increasing the number of 
workers between two computations. The resulting delay can be in the order of 100s 
of msec. 

• Lithops client cold start – this can happen e.g., when changing workloads (TP to CD or 
baseline to current and vice-versa). The resulting delay is very large (1000s of msec) 
since it also involves re-connecting with dataClay. 

In both cases, delaying too long after a warmup round (e.g., resetting dataClay with test 
content) or improperly-tuned warmup, may cause the cold start to happen. This is because 
warm-up in serverless platforms is an opportunistic feature. This clearly indicates one key 
motivation of EXPRESS – guaranteed warm-container behavior with warm concurrency 
completely at the control of the application developer. This is also the reason why various 
market competitors developed their own custom-made solutions to address this exact issue,  
such as AWS Lambda Provisioned Concurrency [17]. However, as already explained in D5.4 
[4], EXPRESS will provide this capability on top of any serverless platform, and as an open-
source project. In that sense, this evaluation provides empirical evidence to the necessity of 
EXPRESS. 

 
Figure 6: 90th percentile of OpenWhisk Invocation Overhead 
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To further emphasize the practical value of serverless when overcoming warm start, we 
present a second set of graphs in Figure 7, where we remove from the result dataset all the 
cold-start results – whether client or worker cold-start. As can be seen now, we get a practical 
solution for soft-real-time systems with 90th percentile of invocation overhead in all cases of 
invocation overhead is less than 85 msec2. We expect that with EXPRESS, this threshold on the 
same hardware resources may be significantly lower, because of a much-improved interaction 
of event-to-client and between client and workers (in addition to guaranteed warm-up 
behavior). 

  
Figure 7: 90th percentile of OpenWhisk Invocation Overhead - Warm Only 

4 Impact, Collaboration and Demonstrations 
In this Section we describe additional impact gathered by CLASS analytics since MS3, 
collaboration efforts with other EU projects and bundled demonstrations. 

4.1 DataBench Support 

The idea is to integrate a benchmark into the DataBench project [18] big data and AI catalogue 
based on the trajectory prediction analytic developed and using the potential of OpenWhisk 
[13] and owperf [19]. The DataBench catalogue lists many of the most used benchmarks 

                                                             
2 As explained before, CLASS operates at the middleware level and thus does not control the entire 
software stack. As such, it cannot guarantee absolute bounds. Rather, it aims for practical solution for 
soft- or near- real-time solutions. 
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related to big data. The blog https://class-project.eu/news/benchmarking-real-time-
serverless-applications-owperf describes deeply how to benchmark serverless functions and 
measure the response times. The collaboration with DataBench consisted in the automation 
of the deployment and the execution of the CLASS benchmark within the DataBench Toolbox 
[20].  

Being listed in the DataBench entails the possibility of reaching out to a bigger audience, as 
well as bringing to the end users of the benchmark an easier and more automated way to 
deploy and run the benchmark. Figure 8 shows the DataBench Toolbox catalogue where the 
CLASS benchmark is placed. 

 

 
Figure 8. DataBench benchmark catalogue 

 

Figure 9 shows the description of the CLASS benchmark in the DataBench Toolbox, where 
users are able to set the configuration parameters to deploy and run the benchmark, specify 
where to store the results, and configure the parameters of owperf about the number of 
workers or number of iterations, among others. 

https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
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Figure 9. CLASS benchmark description 

 

Figure 10 and Figure 11 represent the execution phase of the owperf tool in the DataBench 
infrastructure, and the results related to the response times. The description of each metric is 
well described in the previous blog entry https://class-project.eu/news/benchmarking-real-
time-serverless-applications-owperf 

https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
https://class-project.eu/news/benchmarking-real-time-serverless-applications-owperf
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Figure 10. CLASS benchmark execution 

 

 
Figure 11. CLASS benchmark results 

 

 

4.2 EXPRESS 

EXPRESS is maturing and gaining attention, so far only inside IBM, because of a prolonged 
patent disclosure process. However, it did accumulate additional impact: 

• The patent disclosure has been filed by IBM at the USPTO, with application number 
17/315422. 

• At the time of writing this report, EXPRESS is included in future proposals of 
CONGENIAL+ and MetOS for the future DATA-01-05 call in Cluster 4 of Horizon 
Europe. In this call we aim to demonstrate EXPRESS in different Non-Functional 
Requirements for serverless applications including predictability but also exploring 
locality, heterogeneity and composability. 

• With management agreement, EXPRESS is going to pilot integration with an existing 
IBM Cloud offering. If the prototype convinces the IBM Cloud division, it might 
become an official part of the offering. 

• EXPRESS is planned to become an open-source project on its own.  
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Now that the EXPRESS IP is filed, we expect to also start publishing about it in papers and 
blogs.  

4.3 Lithops 

In CLASS, we have taken Lithops, a map/reduce on serverless engine designed for massive 
parallelism, and transformed it from a high-overhead execution designated for long per-
element computation into another big-data use-case that consists of a large amount of short  
computations and focuses on small overhead and low overall latency. All the changes 
documented in D5.4 [4] and in Section 2.1.3 are planned to undergo a review in IBM and if 
approved be contributed back to the Lithops open-source project [7]. Some of the changes 
have already passed the process and got contributed, such as persisting the map function in 
the container image. 

We conclude the work on Lithops with a demonstration of the TP (Trajectory Prediction) 
application invoked as a Lithops-based OpenWhisk function, with the new chunk size feature 
enabled and specified. The demonstration video is available at the CLASS intranet: 

https://class-project.eu/user/login 

A dedicated user has been created for demonstration purposes, with limited access to 
deliverables and related videos. The credentials to access this service are the following: 

Username: EC_user 

Password: @Hz.52qXXF#K23 

After logging in, click on “Intranet”, the demonstration videos and files of this deliverable are 
located in “PU_D5-5Report” directory. 

  

https://class-project.eu/user/login
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5 Product Glossary 
This auxiliary section provides a brief overview of the products involved in CLASS analytics, to 
put the above discussion in context. 

5.1 Apache OpenWhisk  

Apache OpenWhisk [13] (OW for short) is a serverless, open source cloud platform, which was 
initiated, and is still maintained, by IBM. OpenWhisk executes functions (called actions) in 
response to events, at scale. Both actions and events are high-level abstractions that can be 
implemented in various ways. Actions, as code, can be written in virtually any programming 
language (although there are 7+ languages that have official support), and using many 
platforms and SDKs. Similarly, events can represent any concrete event or signal, such as 
message arrival, command invocation, device signals, or mark the occurrence of a higher logic 
result, such as complex events or other decision logic. Once defined, events can be bound to 
actions using rules to create event-driven applications, with simple facilities for relaying event 
data to invoked actions. Such applications are cloud-native, in the sense that events can arrive 
and be processed by actions anywhere in the cloud, and actions are elastically auto-scaled to 
match the event load.  

The resulting programming model of OpenWhisk offers several attractive advantages to 
developers, in addition to polyglot programming and auto-scaling. Developers do not need to 
manage the location of their code (hence the term “serverless”), its life-cycle or its resource 
allocation – OpenWhisk uses a default (but customizable) resource allocation for each action. 
Actions are time-limited to keep consistent with the original serverless model from AWS, but 
time-limit is configurable. 

The architecture of OpenWhisk consists of the components shown in Figure 12. 

 
Figure 12: OpenWhisk Architecture. 

The components of the OW architecture are introduced as follows: 

• NGINX is an optional reverse proxy, used for load-balancing controllers and for SSL 
termination.  

• CouchDB is a database used for storing the assets created by users – actions, triggers, 
rules, packages and records of action activations. 
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• Controller is a management logic of OW. It implements the OW REST API, and dispatches 
actions for execution at invokers in response to events. 

• Kafka is a message bus used to distribute messages from controllers to invokers in a cloud 
setting. 

• Invoker is a “worker” of OW. It executes actions using IaaS or cluster facilities. By default, 
an invoker uses Docker containers for running actions, but there are variations that use 
Kubernetes and other facilities.  

OW has a simple interface consisting of a REST API and a CLI (wsk command) which wraps the 
REST API. It allows creating actions and invoking them, creating event triggers from event 
feeds of actual events, binding event triggers to actions via rules, and several secondary 
operations. OW programming model is documented in detail in [21].  

5.2 Lithops 

Lithops [7] is a rebranding of the former project of PyWren [22], which is a system that was 
built at UC Berkeley’s RISELAB to enable highly scalable execution of existing Python functions 
on the cloud using the serverless platform. It started on AWS Lambda, the serverless platform 
of AWS Cloud, and later it was converted [23] to use IBM’s Cloud Functions, based on Apache 
OpenWhisk.   

Lithops’s programming interface is based on Map/Reduce. The developer writes a client 
program that during runtime, creates an executor, which issues highly parallel computations 
as map and reduce operations in its API. These operations are executed using a set of concurrent 
serverless functions/actions. Each action’s environment is prepared to include the 
dependencies needed to execute the map or reduce function, including dependencies of the 
function code and of Lithops itself. The functions used in map and reduce, as well as the input 
and output datasets, are shared between the client and the actions via object storage. 

The current basic API for map and reduce in Lithops is as following [23]: 

• executor.map(func, dataset) 

• executor.map_reduce(map_func, dataset, reduce_func) 

Both operations perform map first, which applies func (map_func in reduce) to all elements of 
the dataset. For reduce, it later applies a reduce function to the dataset resulting from map. 
The reduce function has an internal accumulator carrying results from one computation to the 
next, ending with a single final result. Figure 13 demonstrates the operation of a map 
computation in PyWren/Lithops, involving the client, IBM Cloud Functions (OpenWhisk) and 
object storage, in an IBM Cloud setup. 
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Figure 13: Execution of a PyWren map operation. 

5.3 COMPSs 

Deliverable D2.1 [24] provides a detailed description of COMPSs. 
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